code_arithmetique.py 1.98 KB
Newer Older
1 2 3 4
#!/usr/bin/env python3

import numpy as np

Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
5 6
N=10
p = 0.2
7
P = np.random.rand(N)
Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
8 9 10 11
X = np.zeros(N,dtype='int')
for i in range(N):
    if P[i] > p:
        X[i] = 1
12

Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
13 14
X=[0,1,0,0,1,0,0,0,0,0]
print(X)
15

Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
16
def binary(n,m,b=2):
17 18 19
    """
    Convertie un nombre décimal en sa version binaire tronqué à m bits.
    """
Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
20 21 22
    binaire= np.floor(n*b**m) # on se décale dans les entiers et on floor

    return binaire,np.binary_repr(int(binaire))
23

Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
24
def arithm(X,p):
25 26 27 28
    l=[0]
    h= [1]
    for x in X:
        if x == 0:
Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
29
            h.append(l[-1]+p*(h[-1]-l[-1]))
30 31
            l.append(l[-1])
        else:
Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
32
            l.append(l[-1]+p*(h[-1]-l[-1]))
33 34 35
            h.append(h[-1])

            lmb = (l[-1]+h[-1])/2
Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
36

37
            mu = int(-np.log2(h[-1]-l[-1]))+1
Pierre-antoine Comby's avatar
Pierre-antoine Comby committed
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    code = binary(lmb,mu)
    return code,lmb,mu

def arithm_pratique(X,p):
    l = [0]                     # borne inférieur
    h =[1]                      # borne supérieur
    f = 0                       # follow
    c =[]                       # code
    for k in range(len(X)):
        print("for loop")
        if X[k] == 0:
            l.append(l[-1])
            h.append(l[-1]+p*(h[-1]-l[-1]))
        else:
           l.append(l[-1]+p*(h[-1]-l[-1]))
           h.append(h[-1])
        print(X[k])
        print(l[-3:])
        print(h[-3:])
        while ((l[-1]>=0 and h[-1]<0.5)
            or (l[-1]>=0.5 and h[-1]<1)
            or (l[-1]>= 0.25 and h[-1]<0.75)):
            print(" loop")
            if (l[-1]>=0 and h[-1]<0.5):
                print("  case 1")
                c += [0]+[1]*f
                l[-1] *=2
                h[-1] *=2
            elif (l[-1]>=0.5 and h[-1]<1):
                print("  case 2")
                c += [1]+[0]*f
                l[-1] = 2*l[-1]-1
                h[-1] = 2*h[-1]-1
            elif (l[-1]>= 0.25 and h[-1]<0.75):
                print("  case 3")
                f +=1
                l[-1] = 2*l[-1]-0.5
                h[-1] = 2*h[-1]-0.5
    return c
#print(arithm(X,p))
print(arithm_pratique(X,p))