\paragraph{But}: Tracer les trajectoires $\chi(t,x_0),\forall x_0\in\D$ dans l'espace de phase $\R^n$ où $n$ est la dimension du système.
Cette méthode est réalisée pour les systèmes du second ordre ,plan de phase dans $\R^2$, voire dans $\R^3$. Les systèmes mécaniques sont des exemples typiques, notamment via les équation de Lagrange $\ddot{q}=l(q,\dot{q})$ avec $q$ coordonnées généralisées. même si le modèle est d'ordre $2n$ où $n = dim(q)$ on peux tracer les coordonnées deux à deux $x_1= q_i ,x_2=\dot{q_i}$, dans le plan de phase.
\subsection{Méthode pour tracer les trajectoires}
\begin{enumerate}
\item Méthodes informatique :
\begin{itemize}
\item On utlise une intégration numérique pour différentes conditions initiale
\item Graphe des pentes générés numériquement en étudiant $\deriv[x_1]{x_2}=\frac{f_1(x_1,x_2)}{f_2(x_1,x_2)}$
\end{itemize}
\item Méthode papier-crayon
\begin{itemize}
\item Méthode isocline : peut être manuelle et/ou numérique.
\item Solution explicite des équations\\
On élimine le temps de manière explicite ou non.
\end{itemize}
\end{enumerate}
Dans l'analyse de la stabilité on s'interresse au comportement dans un voisinage du point d'équilibre.
\begin{defin}
Pour déterminer \emph{l'index topologique} on utilise la méthode suivante:
\begin{enumerate}
\item Une courbe autour du point d'équilibre choisie d'une manière arbitraire et supposée de taille infinitésimale
\item Avec une paramétrisation dans le sens trigonométrique
\item On considère une suite arbitraire de point $(x_n)$ dans le sens de la paramétrisation
\item Pour chaque point $x_n$ on évalue $f(x_n$) où $f$ vérifie $\dot{x}=f(x)$.
\item Tous les vecteurs $f(x_n)_{n=1...N}$ sont ramenés aux point d'équilibre.
\end{enumerate}
Ainsi \emph{l'index topologique} est la mesure de l'angle (modulo $2\pi$) que l'extrimité des vecteurs $(f(x_i))$ parcourt dans le sens trigonométrique.
\end{defin}
\begin{figure}[H]
\centering
\begin{tikzpicture}
\node (x) at (0,0) {$\bullet$} node[above]{$\overline{x}$};
\draw (x) circle (1.5) (20:1.5) node[inputarrow,rotate=110]{};
\foreach\a in {0,1,2,3,4,5,6,7}
{\draw[red,-latex] (\a*45:1.5) -- ++(\a*45:0.5);
\node at (\a*45:2.4){$f(x_\a)$}; }
\node at (5,0){$\bullet$};
\foreach\a in {0,1,2,3,4,5,6,7}
{\draw[red,-latex] (5,0) -- ++(\a*45:0.8);
\draw (5,0)++(\a*45:1.2)node{$f_\a$}; }
\node at (5,0){$\bullet$};
\node[draw,rectangle] at (10,0){index = +1};
\end{tikzpicture}
\begin{tikzpicture}
\node (x) at (0,0) {$\bullet$} node[above]{$\overline{x}$};
\draw (x) circle (1.5)(20:1.5) node[inputarrow,rotate=110]{};
\foreach\a/\r in {0/1.2,1/1,2/1,3/1,4/1.2,5/1,6/1,7/1}
{\draw[red,-latex] (\a*45:1.5) -- ++(-\a*45:0.5);
\node at (\a*45:\r*2){$f(x_\a)$}; }
\foreach\a in {0,1,2,3,4,5,6,7}
{\draw[red,-latex] (5,0) -- ++(-\a*45:0.8);
\draw (5,0)++(-\a*45:1.2)node{$f_\a$}; }
\node at (5,0){$\bullet$};
\node[draw,rectangle] at (10,0){index = -1};
\end{tikzpicture}
\begin{tikzpicture}
\node (x) at (0,0) {$\bullet$} node[above]{$\overline{x}$};
\draw (x) circle (1.5)(20:1.5) node[inputarrow,rotate=110]{};
\foreach\a/\t/\r in {0/0/2.5,1/45/2.5,2/0/1.8,3/90/2,4/-45/2,5/45/1.8,6/0/1.8,7/90/2}
{\draw[red,-latex] (\a*45:1.5) -- ++(\t:0.7);
\node at (\a*45:\r){$f(x_\a)$}; }
\foreach\a/\l in {0/137,1/26,2/4,7/5}
{\draw[red,-latex] (5,0) -- ++(\a*45:0.8);
\draw (5,0)++(\a*45:1.2)node{$f_{\l}$}; }
\node at (5,0){$\bullet$};
\node[draw,rectangle] at (10,0){index = 0};
\end{tikzpicture}
\caption{Détermination de l'index topologique}
\end{figure}
Il reste maintenat à chercher les trajectoires autour des points d'équilibres.