chap7.tex 33.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
\documentclass[main.tex]{subfiles}
\begin{document}
\section{Commande par bouclage linéarisant}

Principe : se ramener à un comportement linéaire
%\img{0.5}{5/1}

\subsection{Linéarisation entrées-sorties}

Cas SISO : $u\in \R$ et $y\in\R$

Soit le système NL (1) (affine en la commande) :
\[
    \begin{cases}
      \dot{x} & = f(x) + g(x) u\\
      y & = h(x)
    \end{cases}
 \]

\begin{defin}[degré relatif]
Le degré relatif $r$ du système (1) est défini par :
\[ r \in \N \text{ tq } L_gL_f^{r-1}h(x) \neq 0 \text{ et } \forall k < r-1, L_gL_f^{k}h(x) = 0\]
\end{defin}

\subsection{Procédure de linéarisation}
On cherche $r$ par le calcul des dérivées successives de $y=h(x)$ :
  \begin{align*}
    \dot{y} & = \derivp[h(x)]{x} \dot{x}\\
            & = \derivp[h(x)]{x}(f(x)+g(x)u) \\
            & = L_fh(x) + L_gh(x)u
\intertext{Si $L_gh(x)\neq0$, alors $r=1$. Sinon on continue la procédure :}
              y^{(2)} & = \derivp[L_fh(x)]{x}\dot{x} \\
            & = \derivp[L_fh(x)]{x}f(x) + \derivp[L_fh(x)]{x}g(x)u \\
            & = L^2_fh(x) + L_gL_fh(x)u
 \intertext{Si $L_gL_fh(x) \neq 0$, alors $r=2$. Sinon on continue...}
     y^{(r)} & = L_f^rh(x) + L_gL_f^{r-1}h(x)u
  \intertext{On a $1 \leq r \leq n$ car la procédure utilise la base canonique ($x_1=y,x_2=\dot{y}$) : la commande doit apparaître au maximum à la $n$-ième dérivée.}
 \intertext{On pose $v=y^{(r)} = L_f^rh(x) + L_gL_f^{r-1}h(x)u$}
               u & = (L_gL_f^{r-1}h(x))^{-1}(v-L_f^rh(x))
  \end{align*}
  \[
    u = \alpha(x) + \beta(x)v  , \text{ avec }
    \begin{cases}
      \alpha(x) & = -(L_gL_f^{r-1}h(x))^{-1}L_f^rh(x) \\
      \beta(x) & = (L_gL_f^{r-1}h(x))^{-1}
      \end{cases}
   \]

La nouvelle entrée de commande est $v$ telle que 
\[ \begin{cases} \dot{x} & = f(x) + g(x)\alpha(x) + g(x)\beta(x)v \\  y & = h(x) \end{cases} \]

$u = \alpha(x) + \beta(x)v$ est le bouclage linéarisant statique car à un instant fixé, la linéarisation ne dépend que de $x$ à cet instant.\\

\underline{Cas $r=n$}

\begin{multicols}{2}
Choix de la base : 
\begin{align*}
z_1 & = y = h(x) \\
z_2 & = \dot{y} = L_fh(x) \Rightarrow \dot{z_1} = z_2 \\
z_3 & = \ddot{y} = L_g^2h(x) \Rightarrow \dot{z_2} = z_3 \\
\vdots \\
y^{(n)} & = \dot{z_n} = L_f^nh(x) + L_gL_f^{n-1}h(x)u = v
\end{align*}

Nouveau modèle : 
\begin{align*}
\dot{z_1} & = z_2 \\
\vdots \\
\dot{z_{n-1}} & = z_n \\
\dot{z_n} & = a(z) + b(z)u = v
\end{align*}
donc \[ u = \frac{v-a(z)}{b(z)} \text{ avec } b(z) \neq 0 \]
\end{multicols}

\[ z = \phi(x) = \vect{\phi_1(x) \\ \vdots \\ \phi_n(x)} = \vect{ h(x) \\ L_fh(x) \\ \vdots \\ L_f^{n-1}h(x)} \]
\[ u = \alpha(x)+\beta(x)v \text{ avec } \alpha(x) = -\frac{a(z)}{b(z)}|_{z=\phi(x)} \text{ et } \beta(x) = \frac{1}{b(z)}|_{z=\phi(x)} \]

Schéma blocs :
%\img{0.5}{5/2}

Modèle linéaire :
\[
\begin{cases}\dot{z} & = Az + Bv \\ y & = Cz \end{cases} \text{ avec } A = \left[ \begin{array}{ccccc}
0 & 1 & 0 & \dots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \dots & \dots & 0 & 1 \\
0 & \dots & \dots & \dots & 0
\end{array} \right], \quad B = \vect{ 0 \\ \vdots \\ 0 \\ 1 } \text{ et } C = [1 \quad 0 \dots 0 ]
\]

Synthèse du correcteur linéaire :
%\img{0.5}{5/3}

Planification de trajectoire :
\[ y^{(n)} = v = y_c^{(n)} + a_1 (y_v^{n-1)} - y^{(n-1)})+ \dots + a_{n-1}(\dot{y_c} - \dot{y}) + a_n(y_c-y) \]

Les $a_i$ sont choisis en imposant la dynamique de $\epsilon=y-y_c$ : 
\[ \epsilon^{(n)} + a_1 \epsilon^{(n-1)} + \dots + a_{n-1}\dot{\epsilon} + a_n\epsilon = 0 \]

Matrice d'évolution de la boucle fermée :
\[ A_{BF} = \left[ \begin{array}{ccccc}
0 & 1 & 0 & \dots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \dots & \dots & 0 & 1 \\
-a_n & -a_{n-1} & \dots & \dots & -a_1
\end{array} \right] \quad \text{Forme canonique}
\]

\begin{rem}
Cette méthode est assez simple. Cependant, il faut accéder aux dérivées successives de la sortie. Si on a des capteurs, alors OK, mais calculer une dérivée numérique n'est pas génial.
\end{rem}

\subsection*{Linéarisation entrée-états}

On ne dispose pas d'une sortie $y=h(x)$ donc on essaye de trouver une sortie "fictive".\\

Problème : trouver le bon changement de base $z_1 = \phi_1(x)$ qui remplace $z_1=y=h(x)$ :
\[ z = \vect{z_1 \\ \vdots \\ z_n} = \vect{\phi_1(x) \\ \vdots \\ \phi_n(x)} = \phi(x) \]

$\phi$ est un difféomorphisme, i.e. bijectif et différentiable, de même pour la réciproque.\\

\begin{defin}
Le système $\dot{x} = f(x) + g(x)u$ (1) est linéarisable entrée-états si il existe une région $\Omega \in \R^n$, un difféomorphisme $\phi:\Omega\rightarrow\R^n$ et un retour d'état $u=\alpha(x) + \beta(x)v$ tels que le nouveau vecteur d'état est $z=\phi(x)$ et la nouvelle entrée est $v$ avec $\dot{z} = Az+Bv$, $A$ matrice d'évolution $\in \R^{m \times n}$.
\end{defin}

En s'inspirant de la linéarisation entrée-sortie, on simplifie la recherche de $\phi(x)$ par celle de $\phi_1(x)=z_1$ et le reste des transformations est obtenu par la forme canonique (forme normale).

\begin{align*}
z_2 & = \phi_2(x) \\
& = \dot{z_1} = \dot{\phi_1}(x) \\
& = \derivp[\phi_1(x)]{x}f(x) + \derivp[\phi_1(x)]{x}g(x)u \\
& = L_f\phi_1(x) + L_g\phi_1(x)u \text{ avec } L_g\phi_1(x) = 0 \\
z_3 & = L_f^2 \phi_1(x) \text{ avec } L_gL_f\phi_1(x) = 0 \\
\phi(x) & = \vect{\phi_1(x) \\ L_f\phi_1(x) \\ \vdots \\ L_f^{n-1} \phi_1(x)} \text{ avec } L_gL_f^j \phi_1(x) = 0, j = 0,\dots n-2
\end{align*}

Or, $ L_gL_f^j \phi_1(x) = 0, j = 0,\dots n-2 \Leftrightarrow L_{ad_f^j g} \phi_1(x) = 0 $ car 
\begin{align*}
L_g(L_g\phi_1) - L_g(L_f\phi_1)) & = L_f(\derivp[\phi_1]{x}g)-L_g(\derivp[\phi_1]{x}f) \\
& = \derivp[^2\phi_1]{x^2}g.f + \derivp[\phi_1]{x}J_g.f - \derivp[^2 \phi_1]{x^2}g.f - \derivp[\phi_1]{x}J_f.g \\
0 & = L_{[f,g]}\phi_1 = L_{ad_f g} \phi_1 = 0
\end{align*}

Existe-t-il $\phi_1(x)$ tel que
$\begin{cases}
  L_g L_f^j \phi_1(x) & = 0, \quad j = 0, \dots, n-2\\
  L_g L_f^{n-1}  \phi_1(x) & \neq 0 \\
\end{cases} $ ?

\begin{defin}[Distribution de champs de vecteurs]
L'application $\Delta(x)$ est une distribution de champs de vecteurs sur $\Omega$ si $\forall x \in \Omega, \Delta(x)$ est un sous-espace vectoriel.
\end{defin}

\begin{exemple}
\[\Delta(x) = vect \left\lbrace \vect{x_1 \\ x_2 \\2}, \vect{x_1x_3 \\ x_2x_3 \\ 2x_3},\vect{x_2 \\ x_2 \\ 0} \right\rbrace \]

\begin{align*}
x_2 = 0 & \Rightarrow \Delta(x) = vect \left\lbrace \vect{x_2 \\ 0 \\ 2} \right\rbrace \\
& \Rightarrow \Delta(x) \text{ est e.v. de dim = 1} \\
x_2 \neq 0
& \Rightarrow \Delta(x) = vect \left\lbrace \vect{x_1 \\ x_2 \\ 2},\vect{1 \\ 1 \\ 0} \right\rbrace \\
& \Rightarrow \Delta(x) \text{ est un e.v. de dim = 2}
\end{align*}
$\Delta(x)$ est une distribution de champs de vecteurs.
\end{exemple}

\begin{defin}[Involution]
La distribution $\Delta$ est involutive ssi 
\[\forall f,g \in \Delta, \quad [f,g] \in \Delta, \quad \text{Homogénéité est mère de vertu} \]
\end{defin}

\begin{rem}
$\Delta(x) = vect \{ f_1, \dots, f_p \}$ est une distribution involutive ssi 
\[ \exists \alpha_{ij_k} : \R^n \mapsto \R \text{ tq } [f_i,f_j] = \sum_{k=1}^p \alpha_{ij_k}(x) f_k, \quad i = 1,\dots p, j = 1,\dots p\]
\end{rem}

\begin{exemple}
\[ x_2 \neq 0 \Rightarrow \Delta(x) = vect\left\lbrace \vect{x_1 \\ x_2 \\ 2}, \vect{1 \\ 1 \\ 0} \right\rbrace\]
\begin{align*}
[f_1,f_2] & = J_{f_2}f_1 - J_{f_1} f_2 \\
          & =
            \begin{bmatrix}
              0 & 0 & 0 \\
              0 & 0 & 0 \\
              0 & 0 & 0
            \end{bmatrix}
                      \vect{x_1 \\ x_2 \\ 2} -
          \begin{bmatrix}
              1 & 0 & 0 \\
              0 & 1 & 0 \\
              0 & 0 & 0
            \end{bmatrix}
  \vect{ 1 \\ 1 \\ 0} \\
& = \vect{ -1 \\ -1 \\ 0} = -f_2 \in \Delta
\end{align*}

$\Delta$ est une distribution involutive pour $x_2 \neq 0$
\end{exemple}

\newcommand{\lesys}{$\dot{x}=f(x)+g(x)u, x\in\R^n, u\in\R$}

\begin{thm}[Théorème d'existence de $\phi_1$]
Soit le système \lesys.

Il existe un changement de base $z=\phi(x)$ linéarisant sur $\Omega$ tel que $\phi^T(x) = [\phi_1(x), L_f\phi_1(x) \dots L_f^{n-1} \phi_1(x) ]$ ssi :
\begin{itemize}
\item $dim(g,ad_f g, \dots ad_f^{n-1} g) = n$ (Commandabilité Kalman)
\item la distribution engendrée par $\{g, ad_f g, \dots ad_f^{n-1}g\}$ est involutive, $\forall x \in \Omega$ \footnote{Homogénéité est mère de vertu}
\end{itemize}
\end{thm}

Ainsi, la procédure de linéarisation entrée-états est réalisée via les étapes suivantes :
\begin{enumerate}
\item Construction de $E = \{ g, ad_f g, \dots, ad_f^{n-1} g \}$
\item Vérifier la commandabilité, i.e. $dim(E) = n$ (Kalman !)
\item Montrer que $\Delta(x) = vect\{E\}$ est involutif, i.e. $\exists \alpha_{ij_k}(x) : \Omega \mapsto \R$ tel que :
\[ [ad_f^i g, ad_f^j g] = \sum_{k=0}^{n-1} \alpha_{ij_k}(x).ad_f^k g, \quad i,j = 0,\dots,n-1 \]
\item Trouver $\phi_1(x)$ avec $\begin{cases}L_{ad_f^j g} \phi_1(x) & = 0, j=0,\dots n-2 \\ L_gL_f^{n-1} \phi_1(x) & \neq 0 \end{cases}$
\item Construction du nouveau vecteur d'état $z^T = \phi^T(x) = [\phi_1(x), L_f\phi_1(x) \dots L_f^{n-1} \phi_1(x) ]$
\item Linéarisation par retour d'état statique $u = \alpha(x)+\beta(x)v$, $v$ nouvelle commande du modèle linéaire, avec 
\[ \alpha(x) = -\frac{L_f^n \phi_1(x)}{L_gL_f^{n-1}\phi_1(x)} \text{ et } \beta(x) = \frac{1}{L_gL_f^{n-1}\phi_1(x)} \]
\end{enumerate}

Si le degré relatif $r<n$ dimension du modèle (entrée-sortie), alors le modèle N.L est partiellement linéarisable, mais le comportement entrée-sortie est linéaire : suffisant pour la commande du système à condition que la dynamique N.L (non linéarisée par le bouclage) est stable, i.e. $||x||$ est bornée.


Ainsi en imposant :$z_1 = y = \phi_1(x)$ le modèle est sous forme normale : 
\begin{align*}
& \left\lbrace
\begin{array}{cc}
\dot{z_1} & = z_2 \\
\vdots \\
\dot{z_r} & = v
\end{array}
\right. \text{ Partie linéaire, de dimension $r$, entrée-sortie }\\
& \left\lbrace
\begin{array}{cc}
\dot{z_{r+1}} & = q_{r+1}(z) \\
\vdots \\
\dot{z_n} & = q_n(z)
\end{array}
\right.
\text{ Partie N.L., de dimension $n-r$ n'influe sur la sortie}
\end{align*}

\begin{rem}
En linéaire, le degré relatif correspond à la différence entre le degré du dénominateur et du numérateur $r=n-m$.

En effet, $y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y ^{(1)} + a_0y = b_mu^{(m)} + \dots + b_1u^{(1)} + b_0u$ :
\[ \dd{}{t}\vect{x_1 \\ \vdots \\ x_n} = \left[ \begin{array}{ccccc}
0 & 1 & 0 & \dots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \dots & \dots & 0 & 1 \\
-a_n & -a_{n-1} & \dots & \dots & -a_1
\end{array} \right] \vect{x_1 \\ \vdots \\ x_n} + \vect{0 \\ \vdots \\ 0 \\ 1} u, y = (b_0, \dots b_m, 0 \dots 0) u\]
\begin{align*}
z_1 & = y = Cx \\
z_2 & = \dot{z_1} = C\dot{x} = C(Ax+Bu) \\
& = CAx + CBu
\intertext{ Si $r=0$, alors $CB = (b_0 \dots b_M, 0 \dots 0) ( 0 \dots 1)^T = b_m$ ($r=n-m$ zéros dans $C$)}
\intertext{ Si $CB = 0 = L_g\phi_1$,}
z_2 & = L_f \phi_1 = CAx \\
\dot{z_2} & = CA(Ax+Bu) = CA^2x + CAB u \Rightarrow r=1 (??)
\end{align*}
\end{rem}

\subsection{Dynamique des zéros}
\begin{defin}
C'est la dynamique interne pour une sortie identiquement nulle.
Ainsi, $y = 0 = z_1 \Rightarrow \dot{z_1} = \dot{z_2} = \dot{z_r} = v = 0$ et $u = -\frac{a(z)}{b(z)}$

La dynamique restante
\begin{align*}
&\left\lbrace
\begin{array}{cc}
\dot{z_{r+1}} & = q_{r+1}(z) \\
\vdots \\
\dot{z_n} = q_n(z)
\end{array}\right. \text{} z = (0,z_{r+1},\dots z_n)^T = (0,\text{ et }a)^T\\
& \left\lbrace
\begin{array}{cc}
\dot{\eta_1} & = q_{r+1}(0,\eta) \\
\vdots \\
\dot{\eta_{n-r}} & = q_n(0,\eta)
\end{array} \right. \text{ avec } u = \frac{-a(0,\eta)}{b(0,\eta)}
\end{align*}

\end{defin}

\begin{rem}
Si $r<n$, le système comporte une dynamique des zéros.
\end{rem}

\subsection{Système à déphasage minimal}
\begin{defin}[Cas linéaire]
Si les zéros sont à partie $Re<0$
\end{defin}


\begin{defin}[Cas non linéaire]
dynamique des zéros stables, i.e. à l'origine on a :
\[\left\lbrace
\begin{array}{cc}
\dot{\eta_1} & = q(0,\eta) \\
\vdots \\
\dot{\eta_{n-r}} & = q(0,\eta)
\end{array} \right. \text{ est stable} \]
Ainsi, le le système est à déphasage non minimal, on applique la linéarisation $e-s$.
\end{defin}

\subsection{Cas MIMO du bouclage linéarisant}
Le linéarisation revient à trouver la commande qui réalise la réciproque de la non-linéarité : problème inverse. Dans le cas où le problème est non inversible d'une manière statique (i.e. algébrique), la solution est de réaliser une inversion dynamique (ex : l'observateur dans le cas linéaire).\\

Soit le système non-linéaire :
\begin{align*}
\dot{x} & = f(x) + \sum_{i=1}^m g_i(x)u_i \\
y & = \vect{k_1(x) \\ \vdots \\ k_p(x)} \text{ avec } x\in\R^n,y \in \R^p \text{ et } u=\vect{u_1 \\ \vdots \\ u_m} \in \R^m 
\end{align*} 

\begin{defin}[Degré relatif en MIMO]
Le degré relatif $r$ dans le cas MIMO est défini comme $r=r_1+\dots+r_p$ si $r_i$ est le degré relatif associé à la sortie $y_i$ tel que :
\[ \forall j=1\dots m, L_{g_j}L_f^k h_i(x) = 0, \forall k < r_i-1\]
\[ \exists j =1\dots m, L_{g_j}L_f^{r_i-1} h_i(x) \neq 0\]
\end{defin}

\subsection{Procédure de linéarisation}
Sans perte de généralité, on pose $m=p$. Calculons les dérivées successives des sorties :
\[
\vect{ y_1^{(r_1)} \\ \vdots \\ y_p^{(r_p)}} =
\vect{ L_f^{r_1} h_1(x) \\ \vdots \\ L_f^{r_p}h_p(x) } +
\begin{bmatrix}
  L_{g_1}L_f^{r_1-1}h_1 & \dots & L_{g_m}L_f^{r_1 - 1} h_1 \\
  \vdots                     & \ddots     & \vdots                        \\
  L_{g_1}L_f^{r_p-1}    & \dots & L_{g_m}L_f^{r_p-1} h_p
\end{bmatrix}
\vect{u_1 \\ \vdots \\ u_m}
\]
On remarquera l'intérêt de poser $m=p$.

On note $D(x)$ la matrice $\R^{p\times m}$ (dite de découplage). 

Si $D(x)$ est inversible, alors la commande linéarisante est :
\[ u(x) = D(x)^{-1}( \vect{v_1 \\ \vdots \\ v_m} - \vect{L_f^{r-1} h_1(x) \\ \vdots \\ L_f^{r_p}h_p(x)}) \]


\begin{prop}
Le système MIMO est linéarisable si $r=\sum_{i=1}^p r_i = n$ avec $D(x)$ inversible.
\end{prop}

Dans le cas où $r<n$, alors le système MIMO est partiellement linéarisable. Ainsi, $\eta$ est le vecteur d'état des $n-r$ équations non linéaires restantes.
\[ \dot{\eta} = P(z,\eta) + Q(z,\eta) u, \text{ avec } P_k(z,\eta) = L_f \eta_k \text{ et } Q_{k,j}(z,\eta) = L_{g_j}\eta_k, k = 1 \dots n-r, j = 1 \dots m \]

Ainsi la dynamique interne, i.e. dynamique des zéros
\[ \dot{\eta} = P(\underline{0},\eta)+Q(\underline{0},\eta)u(\underline{0},\eta) \text{ avec } u(\underline{0},\eta) = -D^{-1}(\underline{0},\eta)\vect{L_f^{r_1}h_1(\underline{0},\eta) \\ \vdots \\ L_f^{r_p}H_p(\underline{0},\eta)} \]

doit être stable.

Si $D(x)$ n'est pas inversible alors le bouclage linéarisant est dynamique :
\begin{align*}
u & = \alpha(x,q) + \beta(x,q) v \\
\dot{q} & = \gamma(x,q) + \delta(x,q) v
\end{align*}

tel que $z=\phi(x,q)$ est un difféomorphisme.\\

La procédure générique est de dériver $y_j$ au delà de $r_j$ pour obtenir $D(x,q)$ inversible.

Les dynamiques auxiliaires $q$ sont obtenues à partir des dérivées successives des commandes. Cette procédure est la linéarisation par bouclage dynamique.

\section{Poursuite de trajectoire asymptotique}

\subsection{Cas SISO}
Soit le système non-linéaire SISO (1) :
\[ \begin{cases} \dot{x} & = f(x,y)  \\  y & = h(x) \end{cases} \]

Il existe une trajectoire (non unique) remplaçant le vecteur d'état $x$ par $z$ les dérivées successives de la sortie $y$.

Ainsi, on peut réécrire (1) sous forme polynomiale : 
\[ P(y, \dots, y^{(n)}, u , \dots u^{(k)}) = 0 \] avec $n < \infty$ et $k< \infty$:
\[ z = \vect{ z_1 \\ \dots \\ z_n} = \vect{ y \\ \vdots \\ y^{(n-1)}} \]

Sous la condition $ \derivp[P]{y^{(n)}} \neq 0$ le modèle (1) est remplacé par la forme canonique
\begin{align*}
\dot{z_1} & = z_2\\
\vdots \\
\dot{z_n} & = C(z_1 \dots z_n, u \dots u^{(k)})
\end{align*}

On suppose la consigne $y_c$ $n$ fois dérivable par rapport au temps.

Objectif : trouver $u$ tel que $y \to y_c$ suivant une dynamique imposée.

\subsection{Procédure}
\begin{itemize}
\item On pose $\epsilon(t) = y_c(t) - y(t)$ : erreur de poursuite
\item Imposer la dynamique de poursuite : \[\epsilon^{(m)} + \beta_{m-1} \epsilon^{(m-1)} + \dots + \beta_1 \epsilon^{[1)} + \beta_0 \epsilon = 0 \] tels que $\beta_i,i=0\dots m$ sont choisis pour que le polynôme
\[ \lambda^n + \beta_{n-1} \lambda^{n-1} + \dots + \beta_1 \lambda + \beta_0 = 0 \] est Hurwitz, i.e. racines sont à parties réelles strictement négatives.
Pour $n=m$ on a 
\[ y^{(m)} (t) = y_c^{(m)}(t) + \sum
_{i=1}^m \beta_{i-1}(y_c^{(i-1)}(t) - y^{(i-1)}(t)) \]

On peut aussi réécrire le modèle sous forme d'état $(\epsilon_1 = \epsilon)$ :
\begin{align*}
\dot{\epsilon_1} & = \epsilon_2 \\
\vdots \\
\dot{\epsilon_n} & = \hat{C}(y_c^{(n)}, Y_c, E , u , \dots
 u^{(k)}) \text{ avec } Y_c = \vect{y_c \\ \vdots \\ y_c^{(m-1)}} \text{ et } E = \vect{\epsilon_1 \\ \vdots \\ \epsilon_n}
\end{align*}

La poursuite asymptotique revient à trouver $u$ tel que 
\[\hat{C}(y_c^{(n)},Y_c,E,u,\dots u^{(k)}) = -\sum_{i=1}^n \beta_{i-1}\epsilon^{(i-1)} \Leftrightarrow C(z_1,\dots z_n,u,u^{(i)},\dots u^{(k)} = y_c^{(n)} + \sum_{i=1}^n \beta_{i-1} (y_c^{(i-1)} -z_i) \]

Dans le cas où le modèle est sous forme normale (forme obtenue pour le bouclage linéarisant) : 
\begin{align*}
\dot{z_1} & = z_2, z_1 = y \\
\vdots \\
\dot{z_{r-1}} & = z_r \\
\dot{z_r} & = b(z) + a(z)u \text{ avec } a(z) \neq 0 \\
\dot{z_{r+1}} & = q_{r+1} (z) \\
\vdots \\
\dot{z_n} & = q_n(z)
\end{align*}

Si $m=r$ alors \[ u = \frac{1}{a(z)} (-b(z)+y_c^{(r)} + \sum_{i=1}^r \beta_{i-1} \epsilon^{(i-1)} \]
$y_c^{(r)}$ bouclage linéarisant statique

Si$m=r+1$ alors
\[ \dot{u} = \frac{1}{a(z)} (-\dot{b}(z) - \dot{a}(z)u + y_c^{(m)} + \sum_{i=1}^m \beta_{i-1} \epsilon^{(i-1)}) \]
$\dot{a}(z)u$ bouclage linéarisant dynamique
Même démarche pour les degrés supérieurs de la poursuite asymptotique.
\end{itemize}

%\img{0.5}{6/1}

La difficulté de la poursuite asymptotique est la résolution de l'équation dynamique NL 
\[c(z_1 \dots z_n , u \dots u^{(k)} ) y_c^{(n)} - \sum_{i=1}^m \beta_{i-1} (y_c^{(i-1)} - z_i) \]

Dans le cas des systèmes plats, la solution est obtenue via les sorties plates.

\begin{defin}[Platitude]
Un système est dit plat s'il a des sorties plates. Tous les états et entrées de commande du système sont exprimés en fonction des sorties plates et d'un nombre fini de leurs dérivées.\\

\noindent Cas SISO : $\dot{x} = f(x,u)$ est plat si \[\exists y \in \R \text{ tq } x = \phi(y,y^{(1)},\dots,y^{(\beta)}) \text{ et } u=\psi(y,y^{(1)},\dots,y^{(\delta)}), \beta,\delta \in \N\]

\noindent Cas MIMO : $\dot{x} = f(x,u)$ est plat si \[\exists y \in \R^p \text{ tq } x = \phi(y_1,\dots,y_1^{(\beta_1)},\dots,y_p^{(\beta_p)}) \text{ et } u=\psi(y_1,y_1^{(\delta_1)},\dots,y_p^{(\delta_p)}), \beta_i,\delta_i \in \N\]
\end{defin}

\begin{exemple}
Montrer que le système suivant est plat avec pour sorties plates $y_1=x_1$ et $y_2=x_2$ :
\begin{align*}
\dot{x_1} & = u_2 \\
\dot{x_2} & = x_2 + x_3u_2 \\
\dot{x_3} & = x_1u_1
\intertext{ On peut donc écrire : }
x_1 & = y_1 \\
x_2 & = y_2 \\
x_3 & = \frac{\dot{y_2-y_2}}{\dot{y_1}} \\
u_2 & = \dot{y_1}\\
u_1 & = \frac{\dot{x_3}}{y_1} = \frac{(\ddot{y_2}-\dot{y_2})\dot{y_2}-\ddot{y_1}(\dot{y_2}-y_2)}{y_3(\dot{y_1})^2}
\end{align*}
\end{exemple}

Un autre intérêt de la platitude est la planification simple de trajectoire.

\begin{thm}
[Principe de la planification de trajectoire]
La planification peut comporter des contraintes sur la commande (énergie, saturation, ...) et sur les états (obstacles, limitation de vitesse, d'accélération...)
Pour les systèmes plats, la planification est réalisée sur les sorties plates $y\in\R^p$ et la commande est déduite par $u=\psi(y_1,\dots,y_p^{(\delta_p)})$
\end{thm}

\begin{exemple}
[Bras de robot avec $n$ degrés de libertés et $n$ actionneurs]
\[ M(q) \dot{q} + B(q,\dot{q}) = K(q,\dot{q}) u\]

$q$ : coordonnées généralisées $q\in\R^n$

$B(q,\dot{q})$ : vecteur des forces centrifuges et de Coriolis

$K(q,\dot{q})$ : matrice d'influence avec $rang(K)=n$

Le système est plat où $q\in\R^n$ sont les sorties plates.\\

La planification de trajectoire est réalisée sur les $q$, puis $u=K^{-1}(q,\dot{q})(M(q)\dot{q} + B(q,\dot{q}))$\\

\newpage
Commande en cassecade \footnote{Momo m'a tuer} :
%\imgt{7/1}

\[ C_0(p) = K >>1, \quad H_0(p) = \frac{H_1(p)}{1+KH_1(p)} \approx \frac{1}{K} \]
\end{exemple}

\newpage
\section{Commandes hiérarchisées}

\subsection{Échelles de temps}

Soit le système (1) $\begin{cases}\dot{x_1} & = \epsilon f_1(x_1,x_2,u) \\ \dot{x_2}  & = f_2(x_1,x_2,u)\end{cases}$ avec $f_1$ et $f_2$ lisses (de classe $C^{\infty}$), avec $x_1\in\R^{n_1}$ et $x_2\in\R^{n_2}$.

On suppose que $0 < \epsilon << 1$.

On suppose $\tau = \epsilon t$ nouveau temps: $\tau$ est plus lent que $t$.

Ainsi, le système (1) dans la nouvelle échelle temporelle est donnée par 

\begin{align*}
\dd{x_1}{\tau} & = f_1(x_1,x_2,u) \text{ Dynamique lente est d'ordre 0  en } 1/\epsilon \\
\dd{x_2}{\tau} & = \frac{1}{\epsilon} f_2(x_1,x_2,u) \text{ Dynamique rapide est d'ordre 1 en }1/\epsilon
\end{align*}

Ainsi, dans le cas d'un point d'équilibre stable, $x_2$ converge rapidement vers le voisinage dépendant de $\epsilon$, d'un point d'équilibre de $f_2=0$.

\subsection{Détermination du voisinage}
Pour $\epsilon = 0$, les points d'équilibre du système (1) forment la variété :
\[ \Sigma_0 = \{ (x_1,x_2,u)/ f_2(x_1,x_2,u) = 0 \} \]

alors que pour $\epsilon \neq 0$, les points d'équilibre forment la variété
\[ \Sigma_{\epsilon} = \{ (x_1,x_2,y) / f_1(x_1,x_2,u) = 0 \text{ et } f_2(x_1,x_2,y) \neq 0 \} \]

On a $\Sigma_{\epsilon} \subset \Sigma_0$ donc $\Sigma_{\epsilon}$ dégénère en $\Sigma_0$ pour $\epsilon=0$.

%\img{0.5}{7/2}

L'objectif est d'avoir seulement à faire converger $x_1 \to x_1^*$.\\

À partir du théorème des fonctions implicites, nous avons l'existence de $X_2 \text{ tq } x_2 = X_2(x_1,u)$.

\begin{defin}
On définit la variété
\[ \Sigma_{0,\epsilon} = \{ (x_1,x_2) / f_2(x_1,x_2,u,\epsilon) = 0 \} \]
avec $\dot{u} = \epsilon v$$v$ est une fonction bornée.
\end{defin}

La variété $\Sigma_{0,\epsilon}$ est obtenue à partir de $\Sigma_0$ avec une faible variation de la commande.

\begin{prop}
Soit le système (1) avec $rang(\derivp[f_2]{x_2}) = n_2$, alors $\exists X_2(x_1,u,\epsilon)$ tel que $\forall u$ vérifiant $\dot{u} = \epsilon v$, $v$ bornée, $(x_1,x_2 \in \Sigma_{0,\epsilon}$ avec $x_2 = X_2(x_1,u,\epsilon)$.
\end{prop}

Interprétation :
La variété $\Sigma_0 \Leftrightarrow x_2=X_2(x_1,u)$, obtenue pour $\epsilon=0$, continue d'exister pour $\epsilon \neq 0$ et suffisamment petit si $\dot{u}=\epsilon v$, $v$ bornée.

\begin{exemple}
[MMC]
\[
    \begin{cases}

    L\dd{i}{t} & = u-Ri - k\omega \text{ Dynamique électrique}\\
    J\dd{\omega}{t} & = Ki - \alpha\omega -C_r \text{ Dynamique mécanique temps lent}
  \end{cases}
\]

On pose $\epsilon = L << 1$, donc le temps rapide $\tau = \frac{t}{\epsilon}$\\

Identification avec le système (1) : $x_1=\omega$ et $x_2 =i$.

Pour $\epsilon=0$, $\Sigma_0$ est donnée 
\[ i = \frac{u-k\omega}{R} = X_2(x_1,u) \]

Ainsi, la dynamique lente est donnée par 
\[ J \dd{\omega}{\tau} = \epsilon(k(\frac{u-k\omega}{R}) - \alpha \omega - C_r) \]

En temps lent, la nouvelle expression est 
\[ J \dd{\omega}{t} = -(\frac{k^2}{R}+\alpha) \omega - C_r + \frac{k}{R}u \]

On peut améliorer l'approximation de la variété $\Sigma_{0,\epsilon}$ via un DL du 1er ordre.

\[ i = \frac{u-k\omega}{R} + \frac{L}{R}(\dot{u}-\frac{k}{J}(k(\frac{u-k\omega}{R})-\alpha\omega-C_r)) + \mathcal{O}(L^2) \]

Par exemple, si on veut avoir $i_0=0$, alors $\Sigma_0 = k\omega$. Pour garder $i_0=0$ pour $\Sigma_{0,\epsilon}$, on doit imposer une variation lente de $u$ (lente par rapport à $L\dd{}{t}$
\[ \dot{u} = -\frac{k}{J}(\alpha\omega+C_r) - \mathcal{O}(L^2) \]
\end{exemple}

\begin{rem}
$C_r = -\frac{\dot{u}J}{k}$ est utilisée pour estimer $C_r$ en modulant $\dot{u}$ afin que $i_0$ reste aussi plat que possible et $\omega=0$.
\end{rem}

\subsection{Hiérarchisation par commande à grand gain}

Soit le système (1), où la commande n'intervient que sur $x_2$ linéairement :
\[
  \begin{cases}
    \dot{x_1} & = f_3(x_1,x_2)  \\
    \dot{x_2} & = f_2(x_1,x_2) + u \end{cases} , \quad x_1 \in \R^{n_1}, x_2 \in \R^{n_2}, u \in\R^{n_2}
  \]

Soit $x_2^*$ la trajectoire consigne à imposer à $x_2$. Avec comme hypothèse $f_2(x_1,x_2)$ bornée, nous appliquons la commande à grand gain
\[ u = -\frac{k}{\epsilon}(x_2-x_2^*)\]
$\epsilon<< 1$ et $k$ matrice diagonale définie positive.

Ainsi, suivant la nouvelle échelle de temps $\tau = \frac{t}{\epsilon}$
\[
    \begin{cases}
\dd{x_1}{\tau} & = \epsilon f_1(x_1,x_2) \quad \text{dynaique lente}\\
\dd{x_2}{\tau} & = \epsilon f_2(x_1,x_2) - k(x_2-x_2^*) \quad \text{perturbation et dynamique de convergence rapide}
\end{cases}
\]

$\Sigma_0$ est la variété $x_2 = x_2^*$.

Pour $\epsilon\neq 0$, $\Sigma_{0,\epsilon}$ est la variété $x_2=x_2^*+k\epsilon f_2(x_2,x_2^*)$

La dynamique lente est $\dd{x_1}{\tau} = \epsilon f_1(x_1,x_2^*)$. Par conséquent la consigne $x_2^*$ (commande fictive) peut servir à commander la dynamique lente.

\newpage
\section{Commande par backstepping}

Soit un système sous forme triangulaire (apparition successive des différentes commandes) :
\begin{align*}
\dot{x_1} & = f_1(x_1) + x_2 \\
\dot{x_2} & = f_2(x_1,x_2) + x_3 \\
& \vdots \\
\dot{x_n} & = f_n(x_1,\dots x_n) + u 
\end{align*}

\subsection{Procédure de synthèse}

\paragraph{Étape 1} Afin d'imposer la consigne $x_1^*$, on utilise la fonction de Lyapunov 
\[ V_1(x_1) = \frac{1}{2}(x_1 - x_1^*)^2 \]
Pour assurer la stabilité, il faut que $\dot{V_1}(x_1)$ soit définie négative.
\begin{align*}
\dot{V_1}(x_1) & = (x_1-x_1^*)(\dot{x_1} - \dot{x_1^*}) \\
& = (x_1 - x_1^*)(f_1(x_1) + x_2 - \dot{x_1^*}) 
\intertext{On cherche donc $x_2$ pour que}
\dot{V_1}(x_1) & = \alpha_1(x_1-x_1^*)^2 \quad \text{ avec } \alpha_1 < 0 \\
x_2^* & = \alpha_1(x_1-x_2^*) - f_1(x_1) + \dot{x_1^*}
\end{align*}

Cela assure la convergence asymptotique de $x_1$ vers $x_1^*$.

\paragraph{Étape 2} Faire converger $x_2$ vers $x_2^*$. On utilise la nouvelle fonction de Lyapunov 
\[ V_2(x_1,x_2) = \frac{1}{2}(x_1-x_1^*)^2 + \frac{1}{2}(x_2-x_2^*)^2 \]
On veut $\dot{V_2}(x_1,x_2)$ définie négative :
\begin{align*}
\dot{V_2}(x_1,x_2) & = (x_1-x_1^*)(\dot{x_1} - \dot{x_1^*}) + (x_2-x_2^*)(\dot{x_2} - \dot{x_2^*}) \\
& = \alpha_1(x_1-x_1^*)^2 + \alpha_2(x_2-x_2^*)^2
\intertext{Pour avoir une hiérarchisation dynamique, on pose $\alpha_2 < \alpha_1 < 0$ (la dynamique 2 est plus rapide que la 1)}
(x_2-x_2^*)(\dot{x_2} - \dot{x_2^*}) & = \alpha_2(x_2-x_2^*)^2 \\
(x_2-x_2^*)(f_2(x_1,x_2) + x_3 - \dot{x_2^*}) & = \alpha_2(x_2-x_2^*)^2 \\
x_3^* & = \alpha_2(x_2-x_2^*) - f_2(x_1,x_2) + \dot{x_2^*}
\end{align*}
La démarche est la même à l'étape $n$ :
\[ u  = \dot{x_n^*} - f_n(x_1,\dots,x_n) + \alpha_n(x_n-x_n^*) \]
avec $\alpha_n < \alpha_{n-1} < \dots < \alpha_2 < \alpha_1$

\begin{rem}
Cette méthode est généralisable à des systèmes sans forme :
\begin{align*}
\dot{x_1} & = f_1(x_1) + g_1(x_1)x_2 \\
\dot{x_2} & = f_2(x_1,x_2) + g_2(x_1,x_2)x_3 \\
& \vdots \\
\dot{x_n} & = f_n(x_1,\dots,x_n) + g_n(x_1,\dots,x_n)u
\end{align*}
sur $\mathcal{D} = \{x_1,\dots,x_n \text{ tq } g_1 \neq 0,\dots,g_n\neq 0 \}$
\end{rem}


\newpage
\section{Rejet de perturbation}

\subsection{Cas SISO}
\[ (1) \begin{cases} \dot{x} & = f(x) + g(x)u + p(x) w  \\  y & = h(x)  \end{cases}  \]

Même principe que pour la linéarisation par bouclage, on dérive la sortie par rapport au temps :
\[ \dot{y} = \derivp[h(x)]{x} \dot{x} = L_fh(x) + L_gh(x) u + L_ph(x) w \]

\paragraph{Cas 1} $L_ph(x) \neq 0$\\
Si $L_gh(x) \neq 0$ et la perturbation $w$ est mesurable (rarement), alors le rejet de la perturbation est obtenu par 
\[ u = (L_gh(x))^{-1}(v-L_fh(x) - L_ph(x)w) \quad \text{avec trivialement } v = \dot{y}\]
Si la perturbation n'est pas mesurable, on réalise une linéarisation dynamique avec $x_{n+1} = u$ et $x_{n+2} = w$ mais dans ce cas la perturbation $w$ doit être canonique, i.e. $\exists \alpha \in \N \text{ tq } w^{(\alpha)} = 0$.

Ainsi, on dérive la sortie jusqu'à disparition de la perturbation puis on linéarise.\\

\noindent Si $L_gh(x) = 0$, on calcule les dérivées d'ordres supérieurs de la sortie jusqu'à apparition de la commande (linéarisation dynamique).

\paragraph{Cas 2} $L_ph(x) = 0$.\\
Si $L_gh(x)\neq0$, la perturbation est rejetée pour 
\[ u = (L_gh(x))^{-1}(v-L_fh(x)) \]
Su $L_gh(x) = 0$, on dérive une deuxième fois la sortie.

\begin{prop}
Soient $r$ le degré relatif correspondant à $L_gL_f^{r-1}h(x) \neq 0$ et $\sigma$ le plus petit entier pour lequel $L_pL_f^{\sigma-1}h(x) \neq0$, alors :
\begin{itemize}
\item si $r<\sigma$ la perturbation $w$ est rejetée par la commande linéarisante
\item si $r=\sigma$ la perturbation $w$ est rejetée si elle est mesurable
\item si $r>\sigma$ le rejet de $w$ ne peut se faire que par une linéarisation dynamique : observateur NL si $w$ n'est pas canonique
\end{itemize}
\end{prop}


\subsection{Cas MIMO}
\[ \begin{cases} \dot{x} & = f(x) + \sum_{i=1}^m g_i(x)u_i + p(x) w  \\  y & = h(x)  \end{cases}, \quad x \in \R^n, u \in \R^m, y \in \R^d \]
Même principe que le cas SISO mais une linérisation MIMO où chaque nouvelle entrée $v_i$, permet de rejeter les perturbations sur $y_i$.

\begin{rem}
L'incertitude sur le modèle peut être interprétée comme une perturbation. En effet, le modèle (1) s'écrit 
\[ \begin{cases} f(x) & = f(x) + \Delta f(x) + g(x) u + \Delta g(x) u  \\  y & = h(x)  \end{cases} \]

Suivant l'analyse sur le bouclage linéarisant, le rejet d'incertitude est obtenu si 
\begin{align*}
L_{\Delta f} L_f^i h = 0 & 0 \leq i \leq r-2 \\
L_{\Delta g} L_f^i h = 0 & 0 \leq i \leq r-1
\end{align*}

Ce résultat ne peut être vérifié qu'a posteriori car $\Delta f$ et $\Delta g$ sont inconnues.
\end{rem}

\newpage
\section{Robustesse en NL - Commande par mode glissant}

%%\imgt{8/1}

Un terme $u_r$ est ajouté à la commande de départ $u_{eq}$ ...

\begin{exemple}[Onduleur de tension commandé en courant]
Sans avoir à modéliser la charge, on veut imposer la forme de courant :
%%\imgt{8/2}
\end{exemple}

\subsection{Éléments de synthèse de la commande}

\begin{enumerate}
\item Synthétiser une commande sans prise en compte de l'incertitude ni de la perturbation : surface de glissement (poursuite asymptotique)
\item Commande gardant les états sur la surface de glissement ayant pour hypothèse l'incertitude ou la perturbation bornées : variation de la structure du système par commutation
\end{enumerate}

\begin{defin}[Surface de glissement ou commutation]
$S(x,t)$ est la surface autour (dans un voisinage) de laquelle le système évolue avec une dynamique imposée par $S$.
\end{defin}

\begin{defin}[Système à structure variable]
Un système est à structure variable si son entrée commute entre deux valeurs suivant une logique bien spécifique $\sigma(x)$ 
%%\img{0.5}{8/3}
\end{defin}

\begin{defin}[Commande par mode glissant]
Commande discontinue ayant pour objectif de faire converger le système en $S$. On utilise la fonction de Lyapunov \[ V(x,t) = \frac{1}{2}S^2(x,t) \]

Pour avoir convergence vers la surface de glissement, il faut avoir 
\[ \dot{V}(x,t) = S(x,t) \dot{X}(x,t) \leq 0 \]

$\sigma(x)$ est la logique qui impose $S\dot{S} \leq 0$
\end{defin}

\begin{rem}
$S\dot{S}$ est la condition d'existence d'un régime glissant sur la surface $S$.
\end{rem}

\subsection{Application de la commande par mode glissant}

La poursuite asymptotique est une méthode de détermination de $S$.

Soit $\epsilon(t) = y_c(t) - y(t)$$y_c$ est la consigne et $y$ la sortie.

On pose $S = \epsilon^{(m)}(t) + \beta_{m-1}\epsilon^{(m-1)} + \dots + \beta_1 \dot{\epsilon} + \beta_0 \epsilon$$\beta_i, i =0,\dots,m-1$ sont choisis pour imposer la dynamique de convergence.

\begin{rem}
Par exemple, on peut choisir $S = (\frac{d}{dt} + \lambda)^m \epsilon, \lambda >0$

Choix de la commande (bouclage linéarisant)
\end{rem}

On pose $m=r-1$$r$ est le degré relatif et on a 
\begin{align*}
u & = \frac{1}{L_gL_f^{r-1}h(x)} (-L_f^rh(x) + y_c^{(r)} + \sum_{i=1}^r \beta_{i-2} \epsilon^{(i-1)} + \alpha K sgn(S) ) \\
u & = \frac{1}{L_gL_f^{r-1}h(x)} (-L_f^rh(x) + y_c^{(r)} + \dot{S} + \alpha K sgn(S) ) 
\end{align*}


Ainsi en utilisant le changement de variable $z_i = L_f^{i-1}h(x) = \phi_i(x), i = 1,\dots,r$, la commande linéarisante avec poursuite asymptotique et robuste s'écrit :
\[ u = \frac{1}{b(z,\eta)} (-a(z,\eta) + y_c^{(r)} + \dot{S} + \alpha K sgn(S)) \]
avec pour modèle normal :
\begin{align*}
\dot{z_1} & = z_2 \\
& \vdots \\
\dot{z_{r-1}} & = z_r \\
\dot{z_r} & = y_c^{(r)} + \dot{S} + \alpha K sgn(S) + \Delta a (z,\eta) \\ 
\dot{\eta} & = q(z,\eta) + \Delta q(z,\eta) + \Delta p(z,\eta)u \\
\text{ avec } & \Delta a (z,\eta) = L_{\Delta f} L_f^{r-1} h(x), \Delta q(z,\eta) = L_{\Delta f} \eta, \Delta p(z,\eta) = L_{\Delta f} \eta
\end{align*}

On suppose que $|\Delta a (z,\eta)| < K < \infty$ donc pour avoir $\dot{z_r} = y_c^{(r)}$, on doit poser $\dot{S} = - \alpha K sgn(S) - \Delta a(z,\eta)$.

Cas $S>0 \Rightarrow \dot{S} < -K(\alpha-1) < 0 \si \alpha > 1$

Cas $S<0 \Rightarrow \dot{S} > K(\alpha-1) > 0 \si \alpha < 1$

Ainsi on vérifie la condition d'existence du régime glissant, alors quand la trajectoire atteint $S$, alors $y \to y_c$ suivant la dynamique imposée par $S$.
\end{document}

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End: