Commit 8cae2bbf by Pierre-antoine Comby

### remove overfull hbox

parent e04a7d96
 ... ... @@ -160,7 +160,10 @@ On remarque que $DA = I_n$. \subparagraph{Méthode 2} Pour $A^TMA>0$. J_{MC} = \underbracket{(D(Y-m_B)-\Theta)^TA^TMA(D(Y-m_B)-\theta)}_ {J_1(Y,\theta)} + \underbracket{(Y-m_B)^T(M-D^TA^TMAD)(Y-m_B)}_{J_2(Y)} \begin{aligned} J_{MC} &= \underbracket{(D(Y-m_B)-\Theta)^TA^TMA(D(Y-m_B)-\theta)}_ {J_1(Y,\theta)}\\ &+ \underbracket{(Y-m_B)^T(M-D^TA^TMAD)(Y-m_B)}_{J_2(Y)} \end{aligned} Alors $\nabla J_{MC} = 0 \implies J_1 = 0 \implies D(Y-m_B) = \hat{\theta}_{MC}$ ... ... @@ -376,8 +379,8 @@ On considère un cout uniforme. \begin{defin} En prenant: \begin{align*} E_{\theta|Y}[C(\hat{\theta},\theta)] &= \int_{\R^m}(1-\Pi_{\Delta}(\tilde{\theta}))f_{\theta|Y=y}(\theta)d\theta &= 1 - \int_{\hat{\theta}-\Delta/2}^{{\hat{\theta}+\Delta/2}}f_{\theta|Y=y}(\theta)d\theta E_{\theta|Y}[C(\hat{\theta},\theta)] &= \int_{\R^m}(1-\Pi_{\Delta}(\tilde{\theta}))f_{\theta|Y=y}(\theta)d\theta \\ &= 1 - \int_{\hat{\theta}-\Delta/2}^{{\hat{\theta}+\Delta/2}}f_{\theta|Y=y}(\theta)d\theta \\ &\simeq 1- \Delta^nf_{\theta|Y=y}(\hat{\theta}) \end{align*} Soit \[ ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!