Commit 97d1ff4b authored by Pierre-antoine Comby's avatar Pierre-antoine Comby

Migrate 424 from drive

parent 41efb086
\documentclass[main.tex]{subfiles}
% Relu jusqu'à 3.4 inclus, X 08/02/2015
% Corrigé jusqu'au 4.3 inclus, A 28/02/2015.
\begin{document}
\paragraph{Objectifs } Donner les connaissances fondamentales sur l'analyse et la commande des systèmes non linéaires en abordant les techniques classiques. Le but est d'avoir une compréhension plus profonde des hypothèses sous-jacentes à la commande non linéaire, des outils disponibles pour l'analyse, la synthèse et les limites des résultats obtenues.
\begin{center}
\begin{itemize}
\item Analyse de la stabilité
\item Outils pour la commande non linéaire
\item Synthèse de lois de commande non linéaire
\end{itemize}
\end{center}
\newpage
\section{Définition}
\paragraph{Définition }:\\
Un système est dit Non Linéaire (N.L) si on n'a pas le principe de superposition, i.e. pour une entrée $\sum \lambda_i u_i$ on a en sortie $y \neq \sum \lambda_iy_i$.\\
\paragraph{Définition - Commande}:\\
Pour la commande, les systèmes N.L englobent les systèmes Linéaires (L), i.e. les systèmes L forment un sous-ensemble identifié au principe de superposition. \\
Exemple de systèmes N.L :
\begin{itemize}
\item Equation de Navier-Stokes (Mécanique des fluides)
\item Equation de Boltzmann (Cinétique d'un gaz peu dense)
\end{itemize}
\bigbreak
\begin{example}
Système N.L décrit par des EDO (Équations Différentielles Ordinaires): le pendule simple\\
L'équation est donnée par $ml.\dot{\theta} = -mg.sin(\theta) - kl.\theta$ avec $k$ le coefficient de frottement.\\
On a la représentation d'état avec $\theta = x_1$ et $\dot{\theta} = x_2:$\\
\[\left \{\begin{array}{cc}
\dot{x_1} & = x_2\\
x_2 & = -\frac{g}{l}sin(x_1) - \frac{k}{l}x_1
\end{array}\right.\]
\end{example}
\begin{rem}
Un système à constantes localisées est décrit par des EDO.\\
Un système à constantes réparties est décrit par des EDP (Équations aux Dérivées Partielles).\\
\end{rem}
\begin{rem}
Si la relation entrées-sorties est de classe $C^1$, alors il existe un voisinage, aussi petit soit-il, sur lequel le comportement est linéaire (DL du $1^{er}$ ordre)\\
Dans le cours, on considère les systèmes N.L ayant pour modèle dynamique des EDO.
\end{rem}
On peut donc représenter les systèmes selon le graphe suivant:
\begin{center}
\includegraphics[scale=0.35]{1/graph1.png}
\end{center}
\section{Passage des EDP vers EDO }
Le passage s'effectue par approximation, car le modèle obtenu est de dimension infinie.
\[\vec{\omega}(x,y,z,t) \approx \sum_{i=1}^Nq_i(t)\vec{\eta}(x,y,z)\]
La stabilité sera analysée sur l'aspect temporel car on ne peut pas avoir une dimension spatiale instable.
\begin{example}[Poutre flexible]
On regarde les différent modes d'excitations, obtenus par la méthode des éléments finis.\\
Ceci permet donc de décrire le système dans la Base Modale.\\
\end{example}
\section{Forme générale de la représentation d'état}
Dans le cas général, les systèmes sont décrits par la représentation d'état :
\[\left\{ \begin{matrix}
\dot{x} = f(x,t,u)\\
y = g(x,t,u)& \text{ avec, } & x\in \mathbb{R}^n\text{, }u\in \mathbb{R}^m\text{, }y\in \mathbb{R}^l
\end{matrix} \right.\]
\noindent \underline{Exemple}: Système LTV
\begin{align*}
f(x,t,u) = A(t)x + B(t) u\\
g(x,t,u) = C(t)x +D(t)u
\end{align*}
Ainsi la solution est noté $\chi (t,x_0)$, qui donne la valeur de $x$ à l'intsant t pour une condirtion initiale $x_0$
\begin{defin}[Trajectoire]
La trajectoire $\chi$ d'un système dynamique $G$ sur $\mathcal{D}\subset \R^n$$n$ est la dimension de $G$ , est une application :
\[
\chi: \R \times \mathcal{D} \to \mathcal{D}
\]
vérifiant les propriétés:
\begin{enumerate}
\item Continuité $\chi $ est continue su r$\R \times \mathcal{D}$ et $\forall x \in \mathcal{D}, \chi (\cdot,x) $ est dérivable sur $\R$
\item Consistance $\chi(0,x) = x$
\item Propriété de Groupe $ \chi(t,\chi(\tau,x))=\chi(t+\tau,x)$
\end{enumerate}
\begin{rem}
suivant la propriété 1. on a :
\[
\derivp[\chi(t,x)]{t} = f(\chi(t,x))
\]
et si on fixe $x=x_0$ à $t=0$ alors :
\[
\deriv{\chi(t,x_0)}= f(\chi(t,x_0))
\]
\end{rem}
L'ensemble $\mathcal{D}$ dans lequel évolue la trajectoire est nommée \emph{espace de phase}
\end{defin}
Dans le cas causal, on se limite à $ \chi: \R_+ \times \mathcal{D} \to \mathcal{D}$.
Pour $t$ fixé on note $\chi_t :=\chi(t,x) \mathcal{D}\to \mathcal{D}$
\begin{prop}
L'application inverse de $\chi_t$ et$\chi_{-t}$ est un homéomorphisme ie bijectif continu et inverse continu
\end{prop}
\begin{proof}
on montre l'injectivité et la surjectivité de $\chi$.
La propriété 1. permet de montrer la continuité.
\end{proof}
\end{document}
\documentclass[main.tex]{subfiles}
\begin{document}
Il s'agit de regarder la stabilité, la convergence vers un point d'équilibre,...\\
On se place dans le cas présent en régime libre pour un système invariant, c'est à dire que $\dot{x} = f(x,u=0)$ et $y = g(x,u=0)$.\\
\begin{rem}
On pose $u=0$, car la stabilité et la dynamique du système sont des caractéristiques intrinsèques d'un système, donc indépendantes de l'entrée.\\
\end{rem}
Pour étudier la stabilité, on se place dans le plan de phase. Celui-ci permet de situer les points d'équilibres et de vérifier la stabilité. Sa dimension est égale au nombre de variables d'état.\\
Ainsi, pour des systèmes du second ordre, on va avoir:
\[\begin{matrix}
x= \begin{pmatrix}x_1\\x_2\end{pmatrix} &\text{et}& f(x)=\begin{pmatrix}f_1(x)\\f_2(x)\end{pmatrix}
\end{matrix}\]
L'espace des phases devient alors ici un plan de phase dans lequel on va rechercher les trajectoires.\\
Dans la suite, on s'intéressera au cas de dimension deux pour positionner et comprendre le problème.\\
\section{Méthode la plus utilisée : iso-clines}
Pour cette méthode, il s'agit de poser :
\begin{align*}
\frac{dx_2}{dx_1}&= \frac{f_2(x)}{f_1(x)} = Cst \\
\end{align*}
C'est-à-dire de rechercher les points tel que la pente en $x$ est égale à une constante donnée.\\
\begin{example}[Pendule inversé]
Cas sans frottement : \[
\begin{cases}
x_1 &= \theta \\
x_2 &= \dot{\theta}
\end{cases}
\Rightarrow
\begin{cases}
x_1 & =x_2\\
x_2 & = -\frac{g}{l}sin(x_1)
\end{cases}
\]
\smallbreak
Les iso-clines vérifient donc :
\begin{align*}
\frac{dx_2}{dx_1}&= \frac{-\frac{g}{l}sin(x_1)}{x_2}\\
&=C
\intertext{donc les points décrivant la courbe ont pour équation:}
x_2 &= -\frac{g}{lC}sin(x_1)
\end{align*}
On trace alors alors ces courbes pour différentes valeurs de constante et l'on obtient:
\begin{center}
\includegraphics[scale=0.4]{1/graph2.png}
\end{center}
L'iso-cline donne la pente de la trajectoire, ainsi, en suivant les pentes données d'iso-cline en iso-cline, on peut remonter à la trajectoire.\\
A noter que pour $C$ infini on est sur l'axe de $x_1$ et pour $C$ nul sur celui de $x_2$.\\
\begin{rem}
sans frottement on atteint un cycle limite tandis qu'avec frottement on tend bien vers l'origine.
\end{rem}
\end{example}
\section{Point d'équilibre }
Les points d'équilibre sont les solutions à l'équation $\dot{x}=0$.\\
\begin{example}[Pendule simple]
\begin{align*}
\dot{x_1} = 0 &\Rightarrow x_2 =0\\
\dot{x_2} = 0 &\Rightarrow x_1 = n\pi \text{ avec, } n\in \mathbb{Z}
\end{align*}
\end{example}
\begin{rem}
Dans le cas où le système L possède un point d'équilibre, i.e. si la matrice $A$ est inversible, il est unique et $x=0$. Par contre, un système N.L peut avoir plusieurs points d'équilibre.\end{rem}
\section{Analyse qualitative du comportement}
Soit le système LTI obtenu à partir de la linéarisation autour d'un point d'équilibre $x_0$.\\
On dit que ce point d'équilibre est stable si c'est un point de convergence des trajectoire, ou instable si c'est un point de divergence des trajectoires.\\
On étudie donc le système autour de son point d'équilibre, en linéarisant son équation autour de ce point. On a donc l'équation:
\begin{align*}
\delta \dot{x}&= A \delta x\\
\text{où, } A&= \frac{\partial f(x)}{\partial x}|_{x=x_0} \text{ Jacobien de f en $x_0$}\\
\text{et, }\delta x &= x-x_0
\end{align*}
\bigbreak
\begin{rem}
En N.L, la stabilité est associée aux points d'équilibre. Ainsi, un même système N.L peut avoir des points d'équilibre stables et instable.
\end{rem}
\begin{example}[Pendule] $x=\begin{pmatrix}2n\pi\\0\end{pmatrix}$ stable et $\begin{pmatrix}(2n+1)\pi\\0\end{pmatrix}$ instable.
\end{example}
L'analyse qualitative de la stabilité est faite par linéarisation.\\
La trajectoire pour une condition initiale $\delta x_0$ est solution de l'équation différentielle précédente, ie \[\delta x(t) = M exp(Jt)M^{-1}\delta x_0\] où J est la matrice diagonale ou de Jordan de A, la matrice d'évolution, et M la matrice de vecteurs propres tel que : $M^{-1}AM = J$.\\
\subsection{Cas $\mathbb{R}$}
$J = \begin{pmatrix}
\lambda_1 &0 \\0&\lambda_2
\end{pmatrix}$$\lambda_1 \neq \lambda_2$\\
On pose le changement de variable $\delta z = M^{-1}\delta x$ : Base Modale.\\ Donc on a $\delta z_0 = M^{-1}\delta x_0$ comme valeur initiales, d'où :
\begin{align*}
\delta z_1(t) &= e^{\lambda_1t}\delta z_{01}\\
\delta z_2(t) &= e^{\lambda_2t}\delta z_{02}
\end{align*}
Ceci permet de tracer les trajectoires dans la base modale.\\
\begin{enumerate}
\item Dans le cas où $\lambda_2 < \lambda_1 < 0$ ou $0 < \lambda_1 < \lambda_2$, on obtient:
\begin{center}
\includegraphics[scale=0.5]{1/graph3.png}
\end{center}
D'un coté on à la convergence plus rapide de $\delta z_2$ par rapport à $\delta z_1$ et de l'autre la divergence plus rapide de $\delta z_2$ par rapport à $\delta z_1$. On a un noeud qui est donc soit stable soit instable.\\
\item Dans le cas où $\lambda_2 < 0 < \lambda_1 $, on obtient:
\begin{center}
\includegraphics[scale=0.5]{1/graph4.png}
\end{center}
On est dans un cas instable et il n'y a pas de point d'équilibre.\\
\item Dans le cas ou $\lambda_1 = 0$, on a:
\begin{align*}
\delta z_1 &= \delta z_{01}\\
\delta z_2 &= e^{\lambda t} \delta z_{02}
\end{align*}
d'où le graphique:
\begin{center}
\includegraphics[scale=0.5]{1/graph6.png}
\end{center}
Il n'y a pas de point d'équilibre car A est non inversible ce qui implique que $\dot{x}=Ax \Rightarrow x=0$\\
\begin{rem}
Il n'y a pas de point d'équilibre d'après la définition $ \dot{x} = 0$ même si graphiquement on converge vers un point.
\end{rem}
\item Dans le cas où $\lambda_1 = \lambda_2 = \lambda$\\
Si $J = \begin{pmatrix}\lambda & 0 \\ 0 & \lambda\end{pmatrix}$ le sous espace propre est de dimension 2.\\
On a un point d'équilibre.
Si la dimension du sous espace propre est de 1, $J = \begin{pmatrix}\lambda & 1 \\ 0 & \lambda\end{pmatrix}$, donc :
\begin{align*}
\delta z_1 &= t e^{\lambda t} \delta z_{01} + e^{\lambda t} \delta z_{02}\\
\delta z_2 &= e^{\lambda t} \delta z_{02}
\end{align*}
\begin{center}
\includegraphics[scale=0.5]{1/graph5.png}
\end{center}
\end{enumerate}
\subsection{Cas $\mathbb{C}$}
On a maintenant $\lambda_{1,2} = \alpha \pm j\beta$. On considère la représentation d'état : $\delta \dot{z_1} = M^{-1} \delta x$ tel que :
\begin{align*}
\delta \dot{z_1} &= \alpha \delta z_1 - \beta \delta z_2\\
\delta \dot{z_2} &= \beta \delta z_1 + \alpha \delta z_2
\intertext{On utilise les coordonnées polaires :}
r = \sqrt{\delta z_1^2 + \delta z_2^2} &\text{ et, } \theta = arctan\left(\frac{\delta z_2}{\delta z_1}\right)
\intertext{on a donc :}
\dot{\theta} &= \beta\\
\dot{r} &= \alpha r
\end{align*}
Ainsi, on obtient :
\[\left \{ \begin{matrix}
\theta(t) = \theta_0 + \beta t\\
r(t) = e^{\alpha t} r_0
\end{matrix}\right.\]
\begin{center}
\includegraphics[scale=0.5]{1/graph7.png}
\end{center}
\[
\begin{cases}
\delta z_1(t) & = e^{\lambda t} \\
\delta z_{10} + te^{\lambda t} \delta z_{20}\\
\delta z_2(t) & = e^{\lambda t} \delta z_{20}
\end{cases}
\]
\section{Cycle limite}
On considère un système oscillant, c'est à dire qu'il existe $T>0$ tel que $\forall t > 0$, $x(t+T) = x(t)$.\\
(On exclut cependant le cas $x(t)$ = constante).
\paragraph{Cycle limite stable}:\\
Pour toutes les conditions initiales appartenant au voisinage du cycle limite,\\
\[\exists t_0 > 0 \text{ et }T > 0 \text{ tel que } \forall t>t_0, \quad x(t+T) = x(t)\]
i.e. toute trajectoire dans un voisinage du cycle limite converge dans un temps fini vers le cycle limite.
\paragraph{Cycle limite instable}:\\
Toutes les trajectoires divergent du cycle limite.\\
Pour toutes les CI n'appartenant pas au cycle limite, $ \exists t > 0 \text{ tel que} x(t) \notin \text{cycle limite} $.
\paragraph{Cycle semi-stable}:\\
Une partie des trajectoires converge et d'autres divergent du cycle limite.
\section*{Théorème de Bendixon}
\begin{thm}
Soit le système du second ordre $\dot{x}=f(x)$ avec $f$ le champ de vecteurs tel que $f:D\rightarrow\R^2$ avec $D$ un connexe (d'un seul tenant, non formé de la réunion d'ensemble disjoint) de $\R^2$ ne contenant pas de point d'équilibre.
Si:
\begin{itemize}
\item $\exists x \in D$ tel que $\div f(x) \neq 0$
\item $\div f$ ne change pas de signe dans $D$
\end{itemize}
Alors $\dot{x}=f(x)$ n'a pas de cycle limite inclus dans $D$.
\end{thm}
\begin{proof}
Par l'absurde, soit $\Gamma = \{x\in D, x(t), 0 \leq t \leq T\}$ est un cycle limite.
$\forall x \in \Gamma$, $f(x)$ est tangent à $\Gamma$ tel que $f(x).n(x)=0$$n(x)$ est le vecteur normal de $\Gamma$ en $x$.
Suivant le théorème de Green,
\[ \oint_{\Gamma} f(x)n(x)dx = \iint_S \div f(x)dS \text{ donc } \iint_S \div f(x)dS = 0\]
Si $\exists x \in D$ tel que $\div f(x) \neq 0$ et que $\div f$ ne change pas de signe dans $D$ (donc a fortiori dans $S\subset D$), on déduit de la continuité de l'opérateur $\div f$ dans $D$ que $\iint_S \div f(x)dS \neq 0$ : contradictoire.
Ainsi, $D$ ne contient pas de cycle limite.
\end{proof}
\begin{example}
Soit le système NL du 2nd ordre $\ddot{x}(t) + \alpha \dot{x}(t) + g(x(t)) = 0$, avec $x(0) = x_0$ et $\dot{x}(0) = \dot{x}_0$$\alpha \neq 0$ et $g:\R \rightarrow \R$ continue avec $g(0)=0$. \\
Représentation d'état :
\[
\begin{cases}
\dot{x}_1(t) & = x_2(t) = f_1(x)\\
\dot{x}_2(t) & = - \alpha x_2(t) - g(x_1(t)) = f_2(x)
\end{cases}
\text{ avec } x_1(t) = x(t) \text{ et }x_2(t) = \dot{x}(t) \]
Calculons $\div f = \derivp[f_1]{x_1} + \derivp[f_2]{x_2} = -\alpha$.
$\div f \neq 0$ et ne change pas de signe donc ce système ne comporte pas de cycle limite $(D=\R^2)$.
\end{example}
\section*{Théorème de Poincaré-Bendixon}
\begin{thm}
Soient le système du 2nd ordre $\dot{x}=f(x)$ et $O_{x_0}^+$ une trajectoire positive, i.e $O_{x_0}^+ = \{ x \in D, x = S(t,x_0), t \geq 0\}$$S(.,x) : \R \rightarrow D$ définit une solution de $\dot{x}=f(x)$ pour une trajectoire passant par $x$, avec un ensemble limite $\omega(x_0)$ i.e. $\omega(x_0) = \bigcap_{t \geq 0} \overline{O_{x_0}^+}$ \footnote{adhérence = plus petit fermé contenant l'ensemble}\\
Si $\omega(x_0)$ est compact et ne contient pas de point d'équilibre, alors la limite ne peut être qu'un cycle limite.\\
\end{thm}
Interprétation :
Dans le cas du 2nd ordre, si on a une convergence des trajectoires vers un compact (fermé borné de $\R^2$) qui ne contient pas de point d'équilibre, alors la limite ne peut être qu'un cycle limite.\\
\paragraph{Examples du poly page 4} Système hybride = commutation entre 2 systèmes linéaires\\
Example 1 :
\begin{align*}
\dot{x} & =
\begin{bmatrix}
-1 & 10 \\-100 & -1 x = A_1x
\end{bmatrix}\\
\dot{x} & =
\begin{bmatrix}
-1 & 100 \\ -10 & -1 x = A_2x
\end{bmatrix}
\quad \text{v.p. } \lambda_{1,2} = -1 \pm j31,62
\end{align*}
Les deux systèmes sont stables
Stabilité locale mais le système est instable globalement.\\
Important : l'analyse faite par linéarisation donne uniquement une information sur la stabilité locale et non globale.\\
Exemple 2 :
\begin{align*}
\dot{x} & =
\begin{bmatrix}
1 &- 10\\100 & 1 x
\end{bmatrix}
= A_1x \\
\dot{x} & =
\begin{bmatrix}
1 & -100\\10 & 1
\end{bmatrix}
x = A_2x \quad \text{v.p. } \lambda_{1,2} = -1 \pm j31,62
\end{align*}
Les deux systèmes sont instables.
En choisissant bien la permutation, on rend le système global stable.
\paragraph{Conclusion} l'analyse de la stabilité par linéarisation ne donne pas une CNS de stabilité des systèmes non linéaires (point d'équilibre), d'où l'importance de définir un autre moyen d'analyse. \\
\begin{rem}
Il existe d'autres méthodes pour tracer les trajectoires dans le plan de phase.
\end{rem}
\begin{example}[Élimination du temps]
\begin{multicols}{2}
\noindent Méthode explicite :
\[
\begin{cases}
x_1(t) & = x_0 \cos t + \dot{x}_0 \sin t\\x_2(t) & = -x_0 \sin t + x_0 \cos t
\end{cases}
\]
\[x_1^2(t) + x_2^2(t) = x_0^2 + \dot{x}_0^2 \]
On a éliminé le temps mais c'est assez \emph{spicifique} à la représentation d'état.
\noindent Méthode implicite :
\[ \dot{x} =
\begin{bmatrix}
0 & 1 \\ 1 & 0
\end{bmatrix}
x \text{ donc }
\begin{cases}
\dd{x_1}{t} & = x_2\\ \dd{x_2}{t} & = -x_1
\end{cases}
\]
\[dt = \frac{dx_1}{x_2} = -\frac{dx_2}{x_1}\]
\[x_1dx_1 = -x_2dx_2 \text{ donc } x_1^2 + x_2^2 = x_{20}^2 + x_{10}^2\]
\end{multicols}
\end{example}
\end{document}
\documentclass[main.tex]{subfiles}
\begin{document}
\section{Hypothèses}
\begin{itemize}
\item la non-linéarité est statique et n'évolue pas dans le temps. On peut la séparer de la dynamique du système. Par exemple, la saturation (ou la zone morte) est une non-linéarité statique.
\item la partie dynamique (linéaire) est un filtre passe-bas \emph{suffisamment efficace} pour négliger les harmoniques d'ordre supérieur à 1. Plus précisément, l'ordre relatif du filtre doit être supérieur strict à 1.
\end{itemize}
\section{Schéma-blocs}
\[ x \longrightarrow \boxed{\text{Non-linéarité}} \longrightarrow y \longrightarrow \boxed{H(p)} \longrightarrow z \]
La fonction de transfert $H(p)$ (fraction rationnelle) correspond à un filtre passe-bas de degré relatif $\geq 2$.\\
On prend $x=X\sin \omega t$. Dans le cas linéaire, seule la valeur de $\omega$ influe sur le tracé de la diagramme de Bode du système. Dans le cas non-linéaire, on a plusieurs tracés de réponses fréquentielles. Par exemple, avec une saturation, on obtient des réponses fréquentielles qui dépendent de l'amplitude d'entrée de $X$ dès qu'elle devient trop élevée.
\begin{figure}[h!]
\centering
\includegraphics[scale=0.4]{2/424-1.png}
\end{figure}
Puisque $H(p)$ rejette les harmoniques d'ordre supérieur à 1, on peut donc décomposer \[y(t)=P \sin \omega t + Q \cos \omega t\]
Dans le cas d'une NL symétrique, on a
\begin{align*}
P& =\frac{2}{T} \int_{[T]} y(t) \sin \omega t dt\\
Q& =\frac{2}{T} \int_{[T]} y(t) \cos \omega t dt \quad \text{ avec } \omega T = 2\pi
\end{align*}
\begin{rem}
Si la NL est non-symétrique, $y(t) = Y+P\sin \omega t + Q \cos \omega t$ avec $Y=\frac{1}{T}\int_{[T]} y(t) dt$. La composante continue $Y$ peut être négligée pour l'analyse de stabilité et modélisée par une perturbation constante à l'entrée de $H(p)$.
\end{rem}
On définit le gain complexe équivalent :
\[ N(X) = \frac{P+jQ}{X} \text{ qu'on note } N(x) = N_P(X) + jN_Q(X) \]
\begin{itemize}
\item $N_P(X)=\frac{P}{X}$ est la gain en phase,
\item $N_Q(X)=\frac{Q}{X}$ est la gain en quadrature.
\end{itemize}
\begin{rem}
\begin{itemize}
\item À la différence du système linéaire, pour une même pulsation, on a plusieurs réponses fréquentielles qui dépendent de l'amplitude de l'entrée $X$. L'analyse de stabilité doit donc se faire par rapport à tous les tracés.
% Inclure le nyquist du génie
\item Les manipulations de schéma-blocs doivent satisfaire les règles connues (principe de superposition) et s'assurer que le signal en amont du bloc NL est le même, et en aval, qu'il est suffisamment filtré pour ne garer que le 1er harmonique.
\begin{example}
\begin{figure}[h!]
\centering
\begin{tikzpicture}
\sbEntree{E}
\sbComp[3]{comp}{E}
\sbRelier[$e$]{E}{comp}
\sbBloc[2]{C}{$C(p)$}{comp}
\sbRelier{comp}{C}
\sbBloc[2]{NL}{Non-linéarité}{C}
\sbRelier[$x$]{C}{NL}
\sbBloc[2]{sys}{$H(p)$}{NL}
\sbRelier{NL}{sys}
\sbSortie[2]{S}{sys}
\sbRelier{sys}{S}
\sbRenvoi{sys-S}{comp}{}
\end{tikzpicture}
\vspace{5mm}
équivalent à
\vspace{5mm}
\begin{tikzpicture}
\sbEntree{E}
\sbBloc[3]{C}{$C(p)$}{E}
\sbRelier[$e$]{E}{C}
\sbComp[4]{comp}{C}
\sbRelier{C}{comp}
\sbBloc[2]{NL}{Non-linéarité}{comp}
\sbRelier[$x$]{comp}{NL}
\sbBloc[2]{sys}{$H(p)$}{NL}
\sbRelier{NL}{sys}
\sbSortie[2]{S}{sys}
\sbRelier{sys}{S}
\sbDecaleNoeudy[4]{S}{R}
\sbBlocr[8]{Cr}{$C(p)$}{R}
\sbRelieryx{sys-S}{Cr}
\sbRelierxy{Cr}{comp}
\end{tikzpicture}
\vspace{5mm}
non équivalent à
\vspace{5mm}
\begin{tikzpicture}
\sbEntree{E}
\sbComp[3]{comp}{E}
\sbRelier[$e$]{E}{comp}
\sbBloc[4]{NL}{Non-linéarité}{comp}
\sbRelier[$\hat{x}\neq x$]{comp}{NL}
\sbBloc[2]{sys}{$H(p)C(p)$}{NL}
\sbRelier{NL}{sys}
\sbSortie[2]{S}{sys}
\sbRelier{sys}{S}
\sbRenvoi{sys-S}{comp}{}
\end{tikzpicture}
\caption{Transformations de schéma-blocs}
\end{figure}
\end{example}
\end{itemize}
\end{rem}
\newpage
\section{Analyse de la stabilité.}
Système NL bouclé à retour unitaire
\begin{figure}[h!]
\centering
\begin{tikzpicture}
\sbEntree{E}
\sbComp[4]{comp}{E}
\sbRelier[$e$]{E}{comp}
\sbBloc[4]{NL}{$N(X)$}{comp}
\sbRelier[$x$]{comp}{NL}
\sbBloc[4]{sys}{$T_{BO}(p)$}{NL}
\sbRelier{NL}{sys}
\sbSortie[4]{S}{sys}
\sbRelier{sys}{S}
\sbRenvoi{sys-S}{comp}{}
\end{tikzpicture}
\end{figure}
Dans l'analyse harmonique, la NL est modélisée par $N(X)$. Ainsi, il faut trouver l'expression de $N(X)$ en fonction de la NL :
\begin{example}[Saturation]
\begin{figure}[h!]
\centering
\includegraphics[scale=0.4]{2/424-4.png}
\end{figure}
Calcul de $N(X)$ :
Pour $0 \leq t \leq t_1$ : $y(t) = X\sin \omega t$
$t_1 \leq t \leq \frac{\pi}{\omega}-t_1$ : $y(t) = X_m = X\sin \omega t_1$
\begin{align*}
P & = \frac{4\omega}{\pi} \int_0^{\frac{\pi}{2\omega}} y(t) \sin \omega t dt \\
& = \frac{4\omega}{\pi} [ \int_0^{t_1} X \sin^2 \omega t dt + \int_{t_1}^{\frac{\pi}{2\omega}} X \sin \omega t_1 \sin \omega t dt ] \\
& = \frac{2X}{\pi}[ \omega t_1 + \frac{\sin 2\omega t_1}{2} ] \\
\intertext{ $t_1=\arcsin(\frac{X_m}{X})$ et $Q=0$}
\intertext{Ainsi}
N(x) & =
\begin{cases}
1 & \si X << X_m\\