Commit b9e0c8e5 authored by Pierre-antoine Comby's avatar Pierre-antoine Comby

cours du 11/03

parent a0db59e5
\documentclass[main.tex]{subfiles}
\begin{document}
\subsection{Introduction}
\emph{Beaucoup de blabla. Beaucoup.}
À part la radio, toute les transmissions sont numériques.
\paragraph{Objectif}
Transmettre le max de donnée avec un fiabilité maximale
\begin{itemize}
\item Malgré les limites théoriques
\item Les contraintes physiques
\item contraintes numériques
\end{itemize}
\subsection{Historique}
\emph{encore du blabla. encore. }
\subsection{Principe d'une chaine de transmission numérique}
\begin{figure}[H]
\centering
\begin{tikzpicture}
[every node/.style={draw,rectangle,minimum height=4em,node distance=0.5cm,scale=0.8}]
\node (S) at (0,0){Source};
\node (CS) [right= of S]{\begin{tabular}{c}Codage \\ source\end{tabular}};
\node (CC) [right= of CS]{\begin{tabular}{c}Codage \\ canal\end{tabular}};
\node (CBB) [right= of CC]{\begin{tabular}{c}Codage B de B \\ modulation\end{tabular}};
\node (C) [right= of CBB]{Canal};
\node (A) [right= of C][adder]{};
\node (Demod)[right= of A]{Demod};
\node (E) [right= of Demod]{Egaliseur};
\node (Decod)[right= of E]{Decodeur};
\tikzset{every node/.style={}}
\draw (S) -- (CS) -- (CC) -- (CBB)-- (C) -- (A.1) (A.3) -- (Demod) -- (E) -- (Decod);
\draw[latex-] (A.4) -- ++(0,1) node[above]{Bruit};
\draw [thick,decoration={
brace,
mirror,
raise=0.5cm,amplitude=0.5cm},decorate] (S.south west) -- (CBB.south east)node[midway,below=1cm]{Emetteur};
\draw [thick,decoration={
brace,
mirror,
raise=0.5cm,amplitude=0.5cm},decorate] (C.south west) -- ++(2.5,0) node[midway,below=1cm]{Canal de transmission};
\draw [thick,decoration={
brace,
mirror,
raise=0.5cm,amplitude=0.5cm},decorate] (Demod.south west) -- (Decod.south east) node[midway,below=1cm]{Recepteur};
\end{tikzpicture}
\caption{Principe d'une chaine de transmission numérique}
\end{figure}
\paragraph{Source}
Une source d'information est un signal aléatoire. Les communications numériques sont alors des signaux discrets.
\paragraph{Codage de source}
Dans cette étape on associe un code de facon bijective une suite de k élement binaire (cf UE 455) $\{c_k\}$
\paragraph{Codage Canal}
L'objectif est de lutté contre les effets du canal:
\begin{itemize}
\item introduction de redondance
\item Ajoute des bits de redondances à $\{c_k\}$ pour former $\{d_n\}$
\item permet l'évaluation d'erreur
\end{itemize}
Il faut trouver un compromis entre débit et robustesse aux erreurs.
\paragraph{Codage de bande de base}
\begin{itemize}
\item Donne une réalité physique au message (tension, énergie...)
\item Utilise des formes d'impulsions
\item Donne au spectre des des propriété utiles (bandes occupée, présence de la fréquence d'horloge ...)
\end{itemize}
\begin{figure}[H]
\centering
\begin{subfigure}{.5\textwidth}
\subcaption{Impulsion rectangulaire}
\end{subfigure}%
\begin{subfigure}{.5\textwidth}
\subcaption{Impulsion de Nyquist}
\end{subfigure}
\caption{Formes d'impulsions classiques}
\end{figure}
\paragraph{Modulation}
Comme pour une modulation numérique
\[
e(t) = A(t)\cos(\Phi(t))
\]
$A(t)$ et $\Phi(t)$ sont les amplitudes et phases instantanée.
\begin{exemple}[Modulation QPSK]
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{scope}
\draw[-latex] (0,-3) -- (0,3);
\draw[-latex] (-3,0) -- (3,0);
\draw (0,0) circle (2);
\node[above right] at (2,0) {00};
\node[above left] at (0,2) {01};
\node[below left] at (-2,0) {11};
\node[below right] at (0,-2) {10};
\end{scope}
\begin{scope}[shift={(4,-3)}]
\begin{axis}
[axis lines = middle,height=6cm, width=12cm,
xmin=0,xmax=360,ymin=-1,ymax=1,
domain=0:360,samples=200, xtick=\empty,ytick=\empty]
\addplot[black,domain=0:90]{0.7*sin(12*x)};
\addplot[black,domain=90:180]{-0.7*sin(12*x)};
\addplot[black,domain=180:270]{0.7*sin(12*x)};
\addplot[black,domain=270:360]{0.7*cos(12*x)};
\draw[dashed] (axis cs:90,-1) -- (axis cs: 90,1);
\draw[dashed] (axis cs:180,-1) -- (axis cs: 180,1);
\draw[dashed] (axis cs:270,-1) -- (axis cs: 270,1);
\draw[dashed] (axis cs:360,-1) -- (axis cs: 360,1);
\node at (axis cs: 45,0.8){01};
\node at (axis cs: 135,0.8){10};
\node at (axis cs: 225,0.8){01};
\node at (axis cs: 315,0.8){00};
\end{axis}
\end{scope}
\end{tikzpicture}
\caption{modulation QPSK}
\end{figure}
\end{exemple}
\paragraph{Canal de transmission}
Plusieurs types de canaux possibles: canal hertzien , ligne filaire , coax...
On les caractérise par leur réponse impulsionnelle complexe, et par sa bande passante B.
\begin{defin}
On défini la \emph{ capacité de Shannon:}
\[
C = B.\log_2(1+RSB)
\]
\end{defin}
\paragraph{Bruit}
Le bruit est présent à la transmission, et dans le canal. on le caractérise par sa densité de probabilité généralement on suppose le bruit additif Blanc et Gaussien:
\[
p(b) = \frac{1}{\sqrt{2\pi \sigma_B^2}} \exp\left(\frac{-(b-\mu_b)^2}{2\sigma_b^2}\right)
\]
On a souvent un bruit centré : $\mu_b=0$
\paragraph{Démodulation}
À la réception on inverse la modulation
\begin{exemple}[Démodulation QPSK]
\end{exemple}
\paragraph{Egaliseur régénerateur}
Objectif : lutter les effets du canal de transmission pour augmenter le débit.
\paragraph{Décodeur}
on refait le passage analogique-numérique et on décode le canal (correction d'erreur) pour cela :
\begin{itemize}
\item echantillonnage (cad prise de décision) :filtrage adapté + sortie dur ou souple
\item décodage du canal
\item décodage de source
\end{itemize}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End:
\documentclass[main.tex]{subfiles}
\begin{document}
\subsection{Codage de donnée discrètes}
\begin{defin}
Les données discrètes sont représentées par des symboles en nombre fini $m$.
On parle d'une répresentation $m-$aire ou $m-$moments
\end{defin}
\begin{exemple}
\begin{itemize}
\item Alphabets
\item Symbole de numérotation (décimal, hexa, octal)
\end{itemize}
\end{exemple}
\begin{tabular}{|c|c|c|c|}
\hline
Sources& Symboles& Dimension& Codage binaires \\
\hline
alpha. simplifié & lettre& 27 & 5\\
alphabet & lettres 128 & 7 \\
Nombres & chiffres & Dec: 0-9 10 & 4 (DCB)\\
Nombres & chiffres & Hex: 0-F 16 & 4 \\
Nombres & chiffres & Ternaire: 0-p 10 & 2)\\
\end{tabular}
\begin{rem}
Les symboles binaire s sont des bits ou ``digit''.
On code un alphabet à $m= 2^n$ symboles avec des mots binaires à $n$ bits. Il y a $m!$ possibilités.
\end{rem}
\subsection{Codage d'une information analogique MIC}
On réalise une conversion Analogique-Numérique classique : Échantillonnage et blocage. Comme au chapitre 1.
\subsection{Modulation différentielles DPCM}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End:
......@@ -3,7 +3,7 @@
% Mise en page
\title{Notes de Cours}
\author{Pierre-Antoine Comby}
\teacher{}
\teacher{F. Sammouth \& J-P Barbeau}
\module{433 \\ Electronique numérique\\ pour la transmission}
\begin{document}
\maketitle
......@@ -79,8 +79,11 @@ Il y a donc un compromis à faire entre bande passante et rapport signal sur bru
\subfile{chap14.tex}
\chapter{Communication numérique}
\emph{Jean-Pierre Barbeau}
\section{Introduction}
\subfile{chap21.tex}
\section{La source de l'information}
\subfile{chap22.tex}
\section{Choix d'un code en bande de base}
\section{Transmission dans un canal en bande de base (non bruité)}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment