
Proost 0.1.0
User manual

ENS Paris-Saclay

Arthur Adjedj
Vincent Lafeychine

Augustin Albert
Lucas Tabary-Maujean

4th December 2022

1 Introduction

This program provides the user a set of tools to work
with λ-terms as described in the Calculus of Con-
struction. Through the Curry-Howard correspond-
ence; users may associate a property or theorem they
are willing to prove to a type which can be expressed
in CoC. Proving it then corresponds to constructing
a term of that type.

Release 0.1.0 of the project includes a toplevel inter-
face also called proost, which is the main way users
can interact with this piece of software. For a use
directly through the crate APIs, please refer to their
respective documentations.

2 Toplevel session

In the toplevel, users are greeted with a prompt.
There, they may enter the following commands:

• import file1 file2 typechecks and loads the
file in the current environment;

• search v looks for the definition of variable v;

• def a := t defines an alias a that can be used
in any following command;

• def a: ty := t defines an alias a that is
checked to be of type ty;

• check u: t verifies u has type t;

• check u provides the type of u;

• eval u provides the definition of u.

If the command succeeds, the toplevel returns a
green check mark, with an associated result if there
is any. Otherwise, a red cross indicates an error oc-
curred, next to some details about it. The command is
discarded and the user may enter another command.

The toplevel provides to a certain extent history
browsing, either via the up and down arrow keys or
some autocompletion from previous commands.

3 Language

This release includes no standard library, which
means users have to build their theories from scratch.
Besides, this version includes no notion of axioms,
which means terms have to be built from encodings
within CoC.

Language syntax is as such:

• Functions (λ-abstractions) are defined with the
keyword fun: fun x: A => u, fun x y: A =>
u (both x and y are of type A), fun x: A, y: B
=> u (multiple arguments, where B may depend
on x);

• Dependent function types (Π-types) are defined
with a pair of parentheses before an arrow, as
in: (x: A)-> B, (x y: A)-> B or (x: A, y:
B)-> C (where the distinctions are similar to the
previous item. Additionally, there is some usual
syntactic sugar when the output type does not
mention the input argument, which corresponds
to usual function types: A -> B, A -> B -> C
(right-associativity);

• Function application of two terms u and v is
simply written u v, and is left-associative when
there are multiple arguments;

©2022 1



• Variables are regular strings, which may only cor-
respond to bound variables or previously defined
terms;

• The type of propositions and higher-order types
are written Prop and Type i, as usual.

This release includes a single example file
contraposition.mdln which defines elementary pro-
positional calculus operators and their constructors.

©2022 2


	Introduction
	Toplevel session
	Language

