Proost: specifications
A small proof assistant written in Rust

ENS Paris-Saclay

Arthur ADJEDJ
Vincent LAFEYCHINE

Augustin ALBERT
Lucas TABARY-MAUJEAN

30th January 2023

This project is under development, and its spe-
cifications themselves are subject to changes, should
time be an issue or a general consensus be reached to
change the purposes of the tool. An example of that
is the syntaz of the language, which is still largely
unstable.

1 General purpose and functions

This project aims at providing a small tool for
typechecking expressions written in the language of
the Calculus of Construction (CoC). This tool shall be
both terminal and editor based through the proost
program that provides both compiler and toplevel-like
capacities and options and a LSP called tilleul. The
file extension used by both programs is .mdln, which
is short for madeleine, the name of the language ma-
nipulated by users in these files.

2 Project structure

Each category of the project is assigned some or all
members of the group, meaning the designated mem-
bers will mainly make progress in the associated cat-
egories and review the corresponding advancements.
Any member may regardless contribute to any part
of the development of the tool.

Some specific categories and items will be added
a star (x) or two to indicate whether they are
respectively current objectives or extra long-term re-
quirements that may or may not be implemented.

all members

2.1 Language design

The proost tool is a simple proof assistant and does
not provide any tactics. As new features arrive from
extensions of the kernel type theory, the madeleine

language must provide convenient shorthands and
notations. The syntax of commands is the following:

e import relative_path_to_file typechecks
and loads the file in the current environment;

o (%) search t searches t in all known terms,
where t may contain _ joker identifiers (see sec-
tion 2.7);

e def a := t defines an alias a that can be used
in any following command;

o def a: ty :=t defines an alias a that is
checked to be of type ty;

e check u: t verifies u has type t;
e check u provides the type of u;

e ewval u provides the definition of u.

Below is an overview of the syntax of the terms,
including hypothetical developments. The syntax is
partially inspired by that of Coq, OCaml and Lean.
Comments are defined using the keyword //.

Elementary type theory

// Church construction of natural numbers

def Nat :=
(N: Type) -> (N -> N) -> N -> N
def z := fun N: Type =>
fun f: (N -> N), x:N => x
check z: Nat
def succ := fun n: Nat, N: Type =>
fun f: (N -> N), x: N =>

f (n N f x)
check succ: Nat -> Nat




Universe polymorphism

def foo.{i,j} : Type (max i j) + 1
:= Type i -> Type j

Unification

def comm := \/x y, x +y =73 + x

(») Existential types as well as other usual types.

def t :=En, n*xn-n+4=20

General framework for inductive types.
For the moment, inductive types and their recursors
are hardcoded in the kernel.

def inductive Toto :=
Gur (Nat) | Baba(Toto)

2.2 Toplevel AuA

The proost command, when provided with no ar-
gument, is expected to behave like a toplevel, akin
to ocaml or coqtop. There, user is greeted with a
prompt and may enter commands. When provided
with existing file paths, proost intends to typecheck
them in order, that is, reading them as successive in-
puts in the toplevel. Later features for this include a

more extended notion of “modules” where files
provide scopes.
2.3 LSP VL

The tilleul binary provides an implementation of
the Language Server Protocol and will gradually im-
plement more features of it.

2.4 Parsing AuA

The parsing approach is straightforward and relies on
external libraries. The parser is expected to keep ad-
apting to changes made in the term definitions and
unification capability. The parser is thoroughly tested
to guarantee full coverage.
2.5 Kernel

all members

The kernel manipulates A-terms in the Calculus of
Construction and is expected to store and manage
them with a relative level of efficiency. The type the-
ory used to build the terms will be successively exten-
ded with:

e abstractions, II-types, predicative universes with
Prop;

e universe polymorphism;

© 2023

equality types, natural numbers;
o (%) X-types, etc.;
. extraction;

. lists, records, accessibility predicate.

2.6 Optimisation ArA LTM

Extra care must be put into designing an efficient
memory management model for the kernel, along with
satisfactory typing and reduction algorithms.

In particular, the first iteration of the program ma-
nipulates directly terms on the heap, with no partic-
ular optimisation: every algorithm is applied soundly
but naively.

A first refactor of the memory model includes using
a common memory location for terms, ensuring invari-
ant like unicity of a term in memory, providing lazi-
ness and storing results of the most expensive func-
tions (memoizing). This model also provides stronger
isolation properties, preventing several memory pools
(arena is the technical term used in the project) from
interacting with one another.

2.7 Unification

Early versions of the tool may require the user to
explicit every type at play. Successive versions may
gradually include unification tools (meta-variables) of
better quality to assist the user and alleviate some of
their typing-annotation burden.

2.8 Developpement tools VL LTM

Tests are mandatory in every part of the project. A
tool originally developed by the Mozilla team was
modified to allow for a more precise branch coverage
of the project. The Nix framework is used to auto-
matically build and package the application as well as
generating a docker image and providing developers
tools of the same version.



	General purpose and functions
	Project structure
	Language design 
	Toplevel 
	LSP 
	Parsing 
	Kernel 
	Optimisation 
	Orange () Unification
	Developpement tools 


