
Proost 0.3.0
User manual

ENS Paris-Saclay

Arthur Adjedj
Vincent Lafeychine

Augustin Albert
Lucas Tabary-Maujean

30th January 2023

1 Introduction

This program provides the user a set of tools to work
with λ-terms as described in the Calculus of Construc-
tion (CoC). Through the Curry-Howard correspond-
ence users can associate a property or theorem they
are willing to prove to a type which can be expressed
in CoC. Proving it then corresponds to constructing
a term of that type.

Release 0.1.0 of the project includes a toplevel in-
terface also called proost, which is the main way users
can interact with this piece of software. For a use
directly through the crate APIs, please refer to their
respective documentations.

Release 0.2.0 includes the ability to manipulate
universe-polymorphic declarations, a framework for
hardcoding axioms in the code base of the kernel, a
better handling of error locations in the interface and
a proof-of-concept implementation of the LSP pro-
tocol.

Release 0.3.0 provides a variety of minor upgrades,
including a better printing of terms, some optimisa-
tions in the kernel, many fixes in the parser and the
toplevel, the beginning of a standard library as well as
new types, most notably natural numbers and equal-
ity. We would like to thank all new contributors for
their efforts!

2 Toplevel session

In the toplevel, users are greeted with a prompt.
There, they may enter the following commands:

• import file1 file2 typechecks and loads the
files in the current environment;

• search v looks for the definition of variable v;

• def a := t defines an alias a that can be used
in any following command;

• def a: ty := t defines an alias a that is
checked to be of type ty;

• check u: t verifies u has type t;

• check u provides the type of u;

• eval u provides the normal form of u.

Optionally, defined terms can be of the form
a.{i, j}, meaning they are universe-polymorphic in
i and j. In that case, they are called declarations.
Later, these declarations can be used for creating new
terms, by calling them like a.{n, m}, where n and m
are well-defined universe levels.

If the command succeeds, the toplevel returns a
green check mark, with an associated result if there
is any. Otherwise, a red cross indicates an error oc-
curred, next to some details about it. The command is
discarded and the user may enter another command.

The toplevel provides to a certain extent history
browsing, either via the up and down arrow keys
or some auto-completion from previous commands.
The toplevel also provides partial syntax highlight-
ing, multi-line editing, which integrates with a detec-
tion of the currently-opened parentheses, if any. An
example session is shown in figure 2.

©2023 1



» import std/nat.mdln
3
» add Zero Zero
7 ^-^
7 expected def var := term, [...] eval term, import path_to_file, or search var
» eval add Zero Zero
3 Zero
» eval add (add Zero (fun p: Prop -> Prop, x: Prop => p (p x))) Zero
7 ^------------------------------------------------^
7 function (λ Nat => NatRec (λ b: Nat => Nat) 1 (λ Nat => λ Nat => Succ 1)) Zero
7 expects a term of type Nat, received λ (b: Prop) -> Prop => λ Prop => 2 (2 1):
7 (a: (b: Prop) -> Prop) -> (b: Prop) -> Prop

Figure 1: Example of an interactive toplevel session

3 Language

Language syntax is as such:

• Functions (λ-abstractions) are defined
with the keyword fun: fun x: A => u,
fun x y: A => u (both x and y are of type
A), fun x: A, y: B => u (multiple arguments,
where B may depend on x);

• Dependent function types (Π-types) are defined
with a pair of parentheses before an ar-
row, as in: (x: A) -> B, (x y: A) -> B or
(x: A, y: B) -> C (where the distinctions are
similar to the previous item. Additionally, there
is some usual syntactic sugar when the output
type does not mention the input argument, which
corresponds to usual function types: A -> B,
A -> B -> C (right-associativity);

• Function application of two terms u and v is
simply written u v, and is left-associative when
there are multiple arguments;

• Variables are regular strings, which may only cor-
respond to bound variables or previously defined
terms (or declarations as explained in the previ-
ous section);

• The type of propositions and higher-order types
are written Prop and Type i, as usual. One may
also refer to the universes in hierarchy through
the Sort keyword as follows: Sort 0 = Prop and
Sort n + 1 = Type n.

The syntax of universe levels is the following:

• numeric constants and level variables defined in
the definition of a declaration are valid universe
level;

• if u is a valid level, u + n is valid, where n is a
numeric constant;

• if u and v are valid levels, max u v and imax u v
(impredicative maximum) are valid levels.

4 Axioms

There is no simple way to browse the set of axioms or
their recursors for the moment. This should be made
easier in future releases. The general current syntax
is, for an inductive type Foo, to have a declaration
Foo_rec which corresponds to its recursor, and other
appropriately-named functions as its constructors.

Please refer to the code presented in example/ and
std/ for concrete examples.

©2023 2


	Introduction
	Toplevel session
	Language
	Axioms

