$$ g(x, t, y, u)=-\| y \|_2+\log\left(2\lambda\| y \|_2+1\right)\xrightarrow[\lambda\rightarrow+\infty]{}+\infty$$
So when $\| y \|_2\geqslant-u$, we have $f^*(y, u)=+\infty$. \\[2mm]
Now we suppose $\| y \|_2 < -u$. We compute the partial derivatives of $g$ with respect to $x$ and $t$:
Now we suppose $\| y \|_2 < -u$. The function $(x, t)\mapsto y^\trans x + tu$ is linear then it is concave. Now we will show that $h : (x, t)\mapsto log \left( t^2- x^\trans x \right)$ is concave to show that $g(\cdot, \cdot, y, u)$ is concave. We let:
$$ X =\pmat{x \\ t}\quad J =\pmat{I_n &0\\0&-1}\qquad\text{such that } h(X)=\log\left(- X^\trans J X \right)$$
Now we compute the gradient of $h$ and its Hessian:
$$\nabla h(X)=\dfrac{2 J X}{X^\trans J X}\qquad\nabla^2 h(X)=2\dfrac{\left( X^\trans J X \right) J -2 X J^\trans J X^\trans}{\left( X^\trans J X \right)^2}=2\dfrac{\left( X^\trans J X \right) J -2 X X^\trans}{\left( X^\trans J X \right)^2}$$
Now we consider a vector $Z =\pmat{ z^\trans v }^\trans$ of $\R^{n+1}$. We look at the sign of $Z^\trans\nabla^2 h(X) Z$ that is to say the sign of $Z^\trans\left( X^\trans J X J -2 X X^\trans\right) Z$:
$$\begin{array}{lll}
Z^\trans\left( X^\trans J X J -2 X X^\trans\right) Z &=&(x^\trans x - t^2)(z^\trans z - v^2)-2\left[\left( z^\trans x \right)^2+(tv)^2\right]\\
&=&\| x \|_2^2\| z \|_2^2- t^2\| z \|_2^2- v^2\| x \|_2^2-2\left( z^\trans x \right)^2-(tv)^2
\end{array}$$
We also now that $t > \| x \|_2$ which gives:
$$ Z^\trans\left( X^\trans J X J -2 X X^\trans\right) Z \leqslant-2 v^2\| x \|_2^2-2\left( z^\trans x \right)^2\leqslant0$$
This means that $\nabla^2 h \preceq0$. So $h$ is concave. Then $g(\cdot, \cdot, y, u)$ is concave on $K$.
We compute the partial derivatives of $g$ with respect to $x$ and $t$:
$$\dfrac{\partial g}{\partial x}(x, t, y, u)= y -\dfrac{2x}{t^2- x^\trans x}\qquad\dfrac{\partial g}{\partial t}(x, t, y, u)= u +\dfrac{2t}{t^2- x^\trans x}$$
Let $\alpha=\frac{1}{2}\left( t^2- x^\trans x \right)$. The maxima satisfies:
Let $\alpha=\frac{1}{2}\left( t^2- x^\trans x \right)$. Because $g(\cdot, \cdot, y, u)$ is concave, he maxima satisfies $\nabla g =0$. That is to say:
$$ x =\alpha y \qquad t =-\alpha u $$
We inject this two new expressions in the derivative of $g$ with respect to $x$ and we obtain: